

CryENGINE 3
Cookbook

Over 90 recipes written by Crytek developers for creating
third-generation real-time games

Dan Tracy

Sean Tracy

BIRMINGHAM - MUMBAI

CryENGINE 3 Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1170611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849691-06-2

www.packtpub.com

Cover Image by Sean Tracy (seanp@crytek.com)

Credits

Authors
Sean Tracy

Dan Tracy

Acquisition Editor
Steven Wilding

Development Editor
Alina Lewis

Technical Editor
Aditi Suvarna

Copy Editor
Laxmi Subramanian

Indexer
Rekha Nair

Project Coordinator
Zainab Bagasrawala

Proofreader
Aaron Nash

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Sean Tracy is Crytek's Senior Field Application Engineer for the award-wining CryENGINE.
He is responsible for adapting the engine and its features to individual licensees, as
well as developing full technical and vertical slice demos for prospective and existing
clients. Describing himself as a generalizing specialist, he also gives support directly to
CryENGINE licensees, while designing and maintaining their workflows, pipelines, and
development techniques.

Sean was recruited by Crytek in 2008 after working as an electronics technician for
the Canadian Military. He was recruited due to his role in founding and leading the
development on the award winning total conversion project MechWarrior: Living Legends.
Since then, he has been featured in numerous gaming magazines and has been invited
to speak at many game related trade shows and seminars. He is an avid gamer with
extensive modding experience on titles including Never Winter Nights, the Battlefield
engine Frostbite, Doom, and Quake.

I would like to thank my wife for her understanding and support throughout
the process of writing this book and for her ongoing support in allowing me
to do what I truly enjoy for a living. I would also like to thank my brother for
co-authoring the book with me as it's a pleasure to be able to work with
someone with the same love for the technology as I have. Finally, I'd like to
thank Crytek and Packt for their support in allowing me to write this book
and for making one of the best game engines in the market.

Dan Tracy is Crytek's Technical Level Designer for the award-winning CryENGINE and
Crysis 2. He is responsible for the creation and maintenance of numerous technical
features and external applications used for telemetry and optimization. Viewed as
more than a level designer, Dan prides himself on pushing the envelope when it
comes to improving both technical and game related designs across multiple
production disciplines.

Dan was recruited by Crytek in 2009 after previously working as a Quality Assurance
Technician for BioWare. He was recruited due to his pivotal role in co-founding and
leading development on the award winning total conversion project MechWarrior: Living
Legends. Since then, he has been featured in numerous gaming magazines and has
been interviewed by multiple media outlets. Dan is a passionate gamer, but an even
more passionate modder and game designer, with vast knowledge and experience with
multiple engines and titles including Never Winter Nights' Aurora, Battlefield's engine
Frostbite, Unreal 3, and CryENGINE. This is Dan's first book.

I would like to thank my friends and family for giving me their support
during the crunch time of the Crysis 2 production, which also paralleled the
creation of this book. If it wasn't for them, this wouldn't have been possible.
I would also like to thank my brother for co-authoring the book with me as
well as Crytek for providing me with this amazing opportunity to share my
knowledge of CryENGINE with the world. Finally, I'd like to thank Packt for
their support and setting this whole project in motion and publishing my first
ever book.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and, as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt

Copy and paste, print, and bookmark content
On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.







Table of Contents
Preface 1
Chapter 1: CryENGINE 3: Getting Started 5

Introduction 5
Opening a level in the CryENGINE 3 Sandbox 6
Navigating a level with the Sandbox Camera 8
Setting up a personalized toolset layout 12
How to customize toolbars and menus 17
Using the Rollup Bar 21
Selecting and browsing level objects 25
Restoring the CryENGINE 3 default settings 28

Chapter 2: Sandbox Basics 31
Introduction 31
Creating a new level 32
Generating a procedural terrain 34
Terrain sculpting 37
Setting up the terrain texture 41
Placing the objects in the world 43
Refining the object placement 44
Utilizing the layers for multiple developer collaboration 47
Switching to game mode 49
Saving your level 50
Exporting to an engine 52
Essential game objects 53
Running a map from the Launcher 54

Chapter 3: Basic Level Layout 55
Introduction 55
Making basic shapes with the Solids tool 56
Editing and merging solids 57

ii

Table of Contents

Grouping the objects 60
Utilizing the Geom entities instead of brushes 61
Road construction 62
Painting vegetation 64
Breaking up tiling with Decals 67
Making caves with Voxels 69
Creating Prefabs to store in external libraries 72

Chapter 4: Environment Creation 75
Introduction 75
Creating your first time of day using the basic parameters 76
Adjusting the terrain lighting 83
Using the real-time Global Illumination 86
Editing HDR lighting and the effects for flares 89
Creating a global volumetric fog 92
Creating a night scene with time of day parameters 95
Color grading your level 97
Creating a photo realistic ocean 99
Improving your sky with clouds 102
Making it rain in your level 105

Chapter 5: Basic Artificial Intelligence 109
Introduction 109
Placing the enemy AI 110
Generating the AI navigation 111
Forbidden boundaries 112
Forbidden areas 113
Setting up the interior navigation 114
Debugging the AI triangulation 119
Narrowing the AI's FOV to allow attacks from behind 121
Respawning AI 122

Chapter 6: Asset Creation 127
Introduction 127
Installing the CryENGINE 3 plugin for 3D Studio Max 128
Creating textures using CryTIF 131
Setting up units to match CryENGINE in 3ds 135
Basic material setup in 3ds 138
Creating and exporting static objects 143
Creating and exporting destroyable objects 149
Using advanced material editor parameters to create animation 153
Creating new material effects 155
Creating image-based lighting 159

iii

Table of Contents

Chapter 7: Characters and Animation 163
Introduction 163
Creating skinned characters for the CryENGINE 164
Ragdoll and physics for characters 173
Creating animation for your character 178
Previewing animations and characters for Sandbox 185
Creating upper body only animations 188
Creating locomotion animations 191
Animating rigid body geometry data 195

Chapter 8: Creating Vehicles 199
Introduction 199
Creating a new car mesh (CGA) 199
Creating a new car XML 205
Giving more speed to the car 211
Increasing the mass to push objects with the car 212
Defining a sitting location 213
Setting up multiple cameras for the car 215
Need for a machine gun 218
Giving the car a weak spot 219

Chapter 9: Game Logic 223
Introduction 223
How to beam the player to a tag point from a trigger 223
Making the AI go to a location when the player enters a proximity trigger 227
Debugging the Flow Graph 229
Creating a kill counter 230
Rewarding the player for reaching a kill goal 232
Displaying the player's health through a Flow Graph 234
Changing the player camera through key input 236
Creating a countdown timer 238

Chapter 10: Track View and Cut-Scenes 241
Introduction 241
Creating a new Track View sequence 242
Animating a camera in the Track View 246
Triggering a sequence using the Flow Graph 251
Animating entities in the Track View 254
Playing animations on entities in the Track View 258
Using console variables (CVars) in the Track View 260
Using track events 263

iv

Table of Contents

Chapter 11: Fun Physics 267
Introduction 267
Low gravity 267
Hangman on a rope 269
Tornadoes 272
Constraints 273
Wrecking ball 275
Rock slide 277

Chapter 12: Profiling and Improving Performance 281
Introduction 281
Profiling performance in the Sandbox 282
Saving level statics 285
Enabling the debug draw modes 290
Optimizing the levels with VisAreas and portals 294
Using light boxes and light areas 297
Activating and deactivating the layers 298

Index 301

Preface
With the overall complexity involved in creating games becoming exceedingly difficult and
expensive with every successive console generation, many game developers have turned
to middleware engines, such as the CryENGINE, that offer a complete pipeline for the game
development process. CryENGINE is a perfect fit for most developers as it allows users to
create their content quickly and easily and thus, allow games to meet and exceed current
generation quality standards and still be created by fewer and fewer people.

As CryENGINE 3 is globally recognized as one of the world's most powerful real-time
middleware development platforms, with this book we will deliver the best of what the engine
has to offer. Through the use of CryENGINE's intuitive and powerful toolset, named Sandbox,
designers, artists, animators, and even programmers will be treated to real-time creation and
iteration tools for bringing their visions to life.

What this book covers
Chapter 1, Getting Started, helps you set up the entire CryENGINE 3 Software Development
Kit, which can be a difficult task. This chapter will guide you through the stages in setting up
the required folder structure and how to set up your layout for the Sandbox Editor.

Chapter 2, Sandbox Basics, helps you to learn the basic and most commonly used features
provided by Sandbox.

Chapter 3, Basic Level Layout, helps you create your first Level Layout within the Sandbox
Editor and learn some of the more advanced techniques used by designers for object
placement and manipulation.

Chapter 4, Environment Creation, utilizes the CryENGINE 3 rendering tools to create
photorealistic environments.

Chapter 5, Basic Artificial Intelligence, helps you learn the basics of how to the use AI to
navigate in your levels.

Preface

�

Chapter 6, Asset Creation, helps you learn the pipeline of asset creation and export your 3D
models to the CryENGINE format.

Chapter 7, Characters and Animation, describes how to create new characters to be used in
the engine along with your own custom animations.

Chapter 8, Creating Vehicles, describes how to create a new vehicle from scratch and set up
the entity code required so your players can drive.

Chapter 9, Game Logic, helps you to get started with the highly versatile Flow Graph Editor
and create many useful scripts used in the level.

Chapter 10, Track View and Cut-Scenes, helps you to learn how to create your own cinematic
cut-scenes within CryENGINE.

Chapter 11, Fun Physics, describes how to set up some enjoyable physics contraptions using
CryENGINE 3's physics system.

Chapter 12, Profiling and Improving Performance, helps you to learn the tools behind profiling
your levels and discover the best methods for improving performance.

What you need for this book
The Software Development Kit version of the CryENGINE is used for all examples in this book,
thus, the reader should have a version of the development kit to be able to follow the recipes
contained in this book.

Who this book is for
This book is written with the casual and professional developer in mind. With that said,
it is important that the readers have some fundamental knowledge of some Digital
Content Creation Tools, such as Photoshop and 3d Studio Max. Though not a fundamental
requirement, having some basic knowledge of real-time graphics software and, consequently,
the terminology used will make the goal of these recipes more clear.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The level must also be inside of your Build folder."

Preface

�

A block of code is set as follows:

<DamageMultipliers>
 <DamageMultiplier damageType="bullet" multiplier="0.125"/>
 <DamageMultiplier damageType="collision" multiplier="1"/>
</DamageMultipliers>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<DamageMultipliers>
 <DamageMultiplier damageType="bullet" multiplier="0.125"/>
 <DamageMultiplier damageType="collision" multiplier="1"/>
</DamageMultipliers>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "To open an existing level,
we need to access the File menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

�

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code and colored graphics
for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
CryENGINE 3:

Getting Started

In this chapter, we will cover:

Opening a level using the CryENGINE 3 Sandbox

Navigating a level with the Sandbox Camera

Setting up a personalized toolset layout

How to customize toolbars and menus

Using the Rollup Bar

Selecting and browsing level objects

Restoring the CryENGINE 3 default settings

Introduction
The main focus of this particular chapter will be in getting the CryENGINE 3 Software
Development Kit installed and having you up and editing a level in the Sandbox editor right
away! One of the key things to keep in mind when learning a game compositing tool such as
Sandbox is to remember to experiment and have fun! It is important not to forget that most of
us (game developers) are trying to make things fun and not dreary and dull.

With such a powerful toolset waiting for you to dive in, let's get right to it!















CryENGINE 3: Getting Started

�

Opening a level in the CryENGINE 3 Sandbox
As most people involved in the game's development process should be familiar with opening
levels, this section will take you through the relatively straightforward task of opening a level
within the CryENGINE 3 Sandbox editing tool.

Getting ready
Having already located the Editor.exe in either your bin32 or bin64 folders, it will now be
started in this section.

If a level is not already loaded, the editor's subsystems can still access assets
and resources from your game. Keep this in mind as some tasks don't require
the loading of a level.

How to do it...
Let's get to opening a level:

1. Launch the Editor.exe located in either the Bin32 or Bin64 folder. You will be
presented with an interface, as shown in the following screenshot:

2. As there are already example levels installed with the SDK, we can open them.

Chapter 1

�

3. To open an existing level, we need to access the File menu.

4. The File menu includes commands related to the handling of level files such as
opening, saving, showing log files, and a list of recently-loaded levels.

5. As we want to open a pre-existing level, choose the Open option.

6. You will then be presented with a browser window defaulting to the
CryENGINE3/game/levels folder.

7. Browse to Forest and open the folder.

8. Within the folder there is a Forest.cry file that contains raw level data for editing.

9. Open the Forest.cry file.

The editor will now start to load this level for you to start exploring!

How it works...
The editor reads the .cry files and can also access the subfolder layers within the
level folder.

As the level loads, it reads the information present in the .cry file.

CryENGINE 3: Getting Started

�

There's more...
You may want to know what the .cry file is composed of or even how to apply console
command changes to individual levels.

What is a .cry file?
A .cry file is the principle level editing format for all levels built in the CryENGINE. It is
actually an archive comprised of binary and XML data that is used only by the editor. You can
open .cry files in the editor, or you can open them with an appropriate archiving program
such as WinRAR.

Using a level.cfg
Similar to the system.cfg, the level.cfg is a file that is executed upon the loading of
a level. The level.cfg can simply be stored in the level's directory. You may add console
variables or level-specific configurations to this file.

See also
Having launched the Sandbox, you can continue to the Navigating a level with the
Sandbox Camera recipe in this chapter

To get right to modifying a level, go to the Selecting and Browsing level objects recipe
later in this chapter

Navigating a level with the Sandbox Camera
The ability to intuitively navigate levels is a basic skill that all developers should be familiar
with. Thankfully, this interface is quite intuitive to anyone who is already familiar with the
WASD control scheme popular in most First Person Shooters Games developed on the PC.

Getting ready
You should have already opened a level from the CCCrrryyyEEENNNGGGIIINNNEEE 333 SSSoooffftttwwwaaarrreee DDDeeevvveeelllooopppmmmeeennnttt KKKiiittt
content and seen a perspective viewport displaying the level.





Chapter 1

�

The window where you can see the level is called the Perspective Viewport window. It is used
as the main window to view and navigate your level. This is where a large majority of your level
will be created and common tasks such as object placement, terrain editing, and in-editor play
testing will be performed.

How to do it...
The first step to interacting with the loaded level is to practice moving in the Perspective
Viewport window.

Sandbox is designed to be ergonomic for both left and right-handed users. In
this example, we use the WASD control scheme, but the arrow keys are also
supported for movement of the camera.

1. Press W to move forwards.

2. Then press S to move backwards.

CryENGINE 3: Getting Started

10

3. A is pressed to move or strafe left.

4. Finally, D is pressed to move or strafe right.

5. Now you have learned to move the camera on its main axes, it's time to adjust the
rotation of the camera.

6. When the viewport is the active window, hold down the right mouse button on your
mouse and move the mouse pointer to turn the view.

7. You can also hold down the middle mouse button and move the mouse pointer to pan
the view.

8. Roll the middle mouse button wheel to move the view forward or backward.

9. Finally, you can hold down Shift to double the speed of the viewport movements.

How it works...
The Viewport allows for a huge diversity of views and layouts for you to view your level; the
perspective view is just one of many. The perspective view is commonly used as it displays
the output of the render engine. It also presents you a view of your level using the standard
camera perspective, showing all level geometry, lighting, and effects.

To experiment further with the viewport, note that it can also render subsystems and their
toolsets such as flow graph, or character editor.

There's more...
You will likely want to adjust the movement speed and how to customize the viewport to
 your individual use. You can also split the viewport in multiple different views, which is
discussed further.

Chapter 1

11

Viewport movement speed control
The Speed input is used to increase or decrease the movement speed of all the movements
you make in the main Perspective Viewport.

The three buttons to the right of the Speed: inputs are quick links to the .1, 1, and 10 speeds.

Under Views you can adjust the viewport to view different
aspects of your level
Top View, Front, and Left views will show their respective aspects of your level, consisting of
bounding boxes and line-based helpers. It should be noted that geometry is not drawn.

Map view shows an overhead map of your level with helper, terrain, and texture information
pertaining to your level.

Splitting the main viewport to several subviewports
Individual users can customize the layout and set viewing options specific to their needs using
the viewport menu accessed by right-clicking on the viewports header.

The Layout Configuration window can be opened from the viewport header under Configure
Layout. Once selected, you will be able to select one of the preset configurations to arrange
the windows of the Sandbox editor into multiple viewport configurations. It should be
recognized that in multiple viewport configurations some rendering effects may be
disabled or performance may be reduced.

CryENGINE 3: Getting Started

12

See also
To start building your own objects immediately, go to the Making basic shapes with
the Solids Tool recipe in Chapter 3, Basic Level Layout

To modify the terrain of the current level, go to the Terrain Sculpting recipe in Chapter
2, Sandbox Basics

Setting up a personalized toolset layout
It would suffice to say that every user of Sandbox will have different preferences to how
different views and toolsets should be distributed on screen. The CryENGINE 3 Sandbox
allows for this kind of user-based customization and this recipe will take you through the
use of some of the built-in tools for customizing your interface.

Getting ready
Before starting, it's important to introduce the view menu. The view menus allow you to turn
various windows, toolbars, and subsystems on or off as well as open the various Sandbox
extended editors and tool dialogs.

While experimenting with views, be aware that if you close a window and want to open it
again, this can be done easily using the View | Open View Pane menu.





Chapter 1

13

Another important toolset that you will likely want on your layout iiisss ttthhheee Rollup Bar.

The Rollup Bar is similar to the 3ds Command Panels for those already familiar with 3ds. It
is a quick menu bar for the majority of the functions available to the editor exposed to the
developer in an easily accessible format.

The final important tool you will likely want is thewant is the Console.

The Console is a direct command-line editor to the CryENGINE 3. This essentially allows
access to various advanced functions within the Sandbox editor, including various debug
and test profiles.

To start this tutorial, you should have Sandbox Editor.exe started.

How to do it...
The first step of customization will be to learn how to scale and move the various windows in
Sandbox around:

1. Let's first open a new window.
2. Click VIEW | Open Viewpane | Asset Browser.
3. This will open up a window containing the asset browser in the centre of your screen.
4. Ignore the contents for now as the asset browser will be explained later on in this

recipe; let's resize the window.
5. Move the mouse pointer to the edge of the window, so that it turns into a double-

ended black arrow. Click and drag the mouse pointer to scale the window.
6. Now that we have resized the window to our liking, let's use the docking toolbars to

anchor the asset browser into the layout.
7. You can see the docking helpers whenever you drag a window over another window,

or the Sandbox editor itself.
8. Click and drag the window from the title bar and move it over various docking helpers

shown around the main view window.
9. Notice that once you release the mouse button, the window will dock itself into

that location.

CryENGINE 3: Getting Started

14

Now that the window is docked, we should learn how to undock it:

1. Similar to when we docked the window, drag the title bar again and move the
selected window away.

2. Notice that the window maintains its original size and shape. You may thus want to
resize the window once you have undocked it.

3. Another important interface to master is the ability to dock a window within
other windows.

4. Go back to the View menu and open another window.

5. For this example, open the Flow Graph window.

6. Now, drag the Asset Browser window to the Flow Graph window.

7. You will observe the docking buttons being displayed again.

8. Use the lower, central button to dock the selected window in the lower half of the
Flow Graph window.

You can also dock windows at the top and sides of other windows using the other
docking buttons:

1. To do this drag the title bar of the Asset Browser out of the Flow Graph window and
away to another docking helper within the flow graph window to move it.

2. The final tool that is available to you in customization is Docking a Window as a Tab
in Another Window.

3. For people using only one monitor, this is almost essential!

Chapter 1

15

4. You may have noticed previously that when you move a window to another window, a
new central, circular button is displayed.

5. This anchor will allow you to place the currently selected window as a tab within
another window.

6. Drag the Asset Browser to the Flow Graph window, and on to the central dock as the
tab button.

7. You will notice that there are now two tabs at the bottom of the window, Flow Graph
and the Asset Browser.

8. You can now select each window by clicking on its corresponding tab.

9. Keep in mind that you can undock a window by dragging its tab to another part of
the screen.

10. Once you are happy with your layout you can save this layout for easy loading later.

11. To do this, we will access the Layout Configuration window on the Display menu
under Configure Layout.

12. Select Save Layout from the Configure Layout dialog.

13. You will then be presented with an opportunity to name this layout. Type the name of
the configuration in this window and click OK.

How it works...
The docking helpers work very similar to windows office applications, so any users of those
applications may be familiar with this system.

The save layout process creates a folder under the CryENGINE3/editor directory
called layouts.

In this folder, it then saves a .layout file that is essentially an .xml file. This means that it
could be edited by hand if required but can also be version controlled, which means multiple
presets can be shared across large teams.

CryENGINE 3: Getting Started

1�

The Status Bar
The Status Bar contains translation/rotation/scaling information for selected objects, editor
interaction shortcuts, and camera controls.

The Console
The Console in the Sandbox editor is used to input variables. It can be visually toggled on or
off by going to the View Menu and selecting View Console or by pressing the caret key (^)
while the Perspective Viewport is selected.

In the editor, a full list of console variables can be accessed by double-clicking the input field
on the Console to open the Console Variables window.

Chapter 1

1�

Search for variables with partial or complete commands. Information on individual variables
can be shown by hovering the mouse over a Console Variable for a couple of seconds in the
Console Variable window; text will then be displayed as a tool-tip.

The Toolbox
The Toolbox is a set of user-defined tools that contains some example shortcuts to useful
editor command lines and different functionality. It can also be added to with user-specific
shortcuts and/or console variables.

See also
To get right to using some of the interfaces, go to the Using the Rollup Bar recipe
later in this chapter

To learn how to customize toolbars and menus, go to the next recipe

How to customize toolbars and menus
This section will now introduce you to the various toolbars and menus available in the
Sandbox. With these toolbars, users can very quickly access many of the features of the
Sandbox editor by using simple icons and groups of icons at the top of the interface. These
toolbars can be configured to fit the preferences and needs of individual users.

Getting ready
Before adjusting the toolbars, it is important that we explore a brief summary of the default
toolbars that are available in Sandbox.

The Standard ToolBar contains open, save, hold, and fetch options.

The EditMode ToolBar contains vvvaaarrriiiooouuusss tttoooooolllsss fffooorrr llleeevvveeelll eeedddiiitttiiinnnggg... TTThhheeessseee tttoooooolllsss iiinnncccllluuudddeee uuunnndddooo aaannnddd
redo, link and unlink, select all, object movement/scaling, axes and terrain options, as well as
object selection, saving, and loading.





CryENGINE 3: Getting Started

1�

The Object ToolBar contains tools for object alignment. The icons are go to selected object,
align selection, align object to grid, set object(s) height, align object to the surface normal,
and fix and unfix selected objects.

With theee Mission ToolBar, you can select the current mission, duplicate a mission, delete a
mission, and reload and edit mmmiiissssssiiiooonnn ssscccrrriiippptttsss...

The Terrain ToolBar contains shortcuts to tools within the Terrain Editor, the Terrain Texture
Layer editor, and Terrain Lighting dialog.

The Dialogs ToolBar contains iiicccooonnnsss uuussseeeddd tttooo aaacccccceeessssss eeexxxttteeennndddeeerrr eeedddiiitttooorrr sssuuuccchhh aaasss ttthhheee Materials
Editor, the Character Editor, the DataBase View, aaannnddd ttthhheee Flow Graph Editor.

The Console ToolBar has oooppptttiiiooonnnsss ssspppeeeccciiififificcc tttooo cccooonnnsssooollleee gggaaammmeee dddeeevvveeelllooopppmmmeeennnttt... TTThhheee bbbuuuttttttooonnnsss iiinnncccllluuudddeee
sync data to console, automatically sync data to console, sync camera, options, load current
level on console, and launch current level on console.

How to do it...
Now that we know about the default toolbars, let's go ahead and set up our layout:

1. To do this, we will need to access the ToolBar settings menu.

2. To access it, right-click anywhere on the Icon Bar.

Chapter 1

1�

3. This will display the ToolBar settings menu.

4. Selecting a toolbar from the list will display it or hide it on the main header.

Toolbars can be arranged horizontally at the top of the editor,
vertically on the edges, or completely undocked from the editor.

5. To customize these toolbars and to create new ones simply click on the Customize
option at the bottom of the ToolBar settings menu.

6. The Customize dialog box allows users to customize preset toolbars, as well as
create custom user toolbars.

7. The New button allows you to create a new custom toolbar. On pressing the button,
a prompt will appear requesting a name for the new toolbar.

8. The Rename button allows you to rename any of the custom toolbars you
have created.

9. The Delete button allows you to delete any of the custom toolbars you have created.

10. The Reset button returns any changes made to the toolbars back to default.

11. Click on New and name it my_toolbar.

12. You will then see the toolbar added as an empty container on the interface.

13. We can now add commands to this toolbar for easy and customized access!

CryENGINE 3: Getting Started

20

14. The Commands tab allowwwsss yyyooouuu tttooo dddrrraaaggg---aaannnddd---dddrrroooppp aaannnyyy ooofff ttthhheee iiicccooonnnsss iiinnn ttthhheee Commands
box into any toolbar, even custom ones.

15. Go to View in the categories options.

16. Click and drag the Show Rollup Bar command into your new toolbar.

17. Click Close to accept the changes to your custom toolbar.

18. To test its function, click the newly created button and notice that it now toggles the
rollup bar on and off.

How it works...
Custom toolbars and overall toolbar configuration is saved in the registry information written
by Sandbox to the PC. The toolbars are quite organic in the fact that you can undock and move
them anywhere in the Sandbox interface, which, of course, makes it far easier to interface
with some of them.

There's more...
You may want to explore some of the other tabs available within the Customize interface.

The Options tab
In the Options tab, there are some options that allow you to edit the way the interface reacts.

The first option is Always show full menus, which as the name suggests always shows the
full menu of the currently selected menu.

The next is the Show full menus after a short delay, which will, after a short delay, display the
full menu even if a skin collapses the menu to only show frequently used items.

Chapter 1

21

The Reset menu and toolbars usage data deletes the record of the commands that you've
used in the editor, restoring the defaults.

Under the Other Header, we have the Large icons checkbox. This displays large icons when
the editor skin has the choice of using large or small icons.

We also have the Show screen tips on toolbars checkbox, which displays screen tips when
the mouse is held over toolbar buttons.

There is a subcheckbox to the screen tips, which is to show shortcut keys in screen tips. This
shows keyboard shortcuts along with the screen tips.

Finally, we have Menu animations. TTThhhiiisss ccchhhaaannngggeeesss hhhooowww mmmeeennnuuusss aaarrreee dddiiisssppplllaaayyyeeeddd... TTThhheee
oooppptttiiiooonnnsss include: (System default), Random, Unfold, Slide, Fade, and None.

Personalized menus and toolbars
The Keyboard tab allows the user to assign different shortcuts to certain functions within
the editor.

You can browse through different categories using the Category drop-down list. Depending
on the category selected, different commands will be listed in the commands frame. If the
function is already assigned to a key, it will be shown in the Key Assignments frame.

To assign a shortcut key, you must have a command selected and then click within the Press
new shortcut key textbox and that key will then be ready to be assigned to the selected
command. To accept the shortcut assignment click the Assign button. You can also remove
this later by using the Remove button.

Using the Rollup Bar
The Rollup Bar is one of the most commonly used tools within Sandbox. By default, it is
located to the right of the viewport typically along the right edge of the interface. This is
where entity parameters, settings, and controls are listed and accessed.

The Rollup Bar is split into four very different panels, which are accessed from their
corresponding tabs.

The first tab contains the object and entity creation tools for the editor, as well as being the
tab that will display all entity-specific information and dialogs.

The second tab has the overall environmental, vegetation, and terrain editing tools. The tools
in this tab are used to modify the specific level you currently have loaded in Sandbox.

The third tab contains the display options.

The last one is the layer organizational tool.

CryENGINE 3: Getting Started

22

Getting ready
In this task, we will only use the Objects and Entities tab, which is the first and default tab
within the Rollup Bar. To access the majority of scene elements throughout this book, we will
use this tab.

It holds interfaces to the various Database libraries and the brush database on your
hard drive.

You must have a pre-existing level opened in Sandbox to complete this recipe.

How to do it...
Let's start using the Rollup Bar.

1. In the Rollup Bar, click on the Brush button.

2. This will display a browser linked to the CryENGINE3/Game/Objects directory of
your build.

3. Brushes are compiled geometry containing no extra data other than collision.
Typically, most levels are created with brushes as they are simple geometry.

At the bottom of the browser window you will see a dialog box that says filter:

1. This is a very useful feature when browsing for specific objects.

2. Type in village in the filter dialog.

3. Once you hit enter the browser will then simplify the contents of the browser to the
folder that contained any objects with the name village in them.

Chapter 1

23

4. Browse to the default SDK folder Objects/library/architecture/village/
and notice there is an object called village_house1_c.cgf.

5. You can now drag this object out of the brush browser and into your level!

How it works...
Within the Objects tab, there are a variety of libraries and object types that support
drag-and-drop functionality.

They are separated logically into a few different areas.

There's more...
There are a variety of different sections contained in the Rollup Bar. These sections are
further explained later and will be used throughout the course of this book.

The AI section
This section within the Rollup Bar contains AI control objects, which are used to control AI
entities and their behaviours in the level. They can define a specific behaviour for an AI with
reference to its location or other variables in the level. AI control objects can define navigation
paths or an area for the AI on the terrain, including boundaries and forbidden areas. The
objects can be used by AI actors to perform specific actions or events, such as animations
and changes of behaviour.

CryENGINE 3: Getting Started

24

The Area section
The Area section contains the area objects, which are used to create three-dimensional zones
in the level that can be used to trigger events.

The Entities section
The Entities section contains all the entities, which the player can interact with in some form.

The Misc Objects section
The Misc Objects section includes various tools and functions used during a level's creation
such as roads, rivers, and comments.

The Solids section
The Solids tool is used to create simple structures and objects, or placeholders for future art
assets. This is one of the best forms of white boxing the engine has available!

Solids can even be exported in an .OBJ format, which is readable by
most all of the DCC tools.

The Archetype entity section
The Archetype section allows users to access currently loaded archetype libraries within a
given level. An Archetype entity is based on a regular entity and specifies individual parameter
values for that regular entity. The main advantage of archetypes is that if the value of an
archetype parameter is changed, all instances of that archetype in the level will be updated
automatically. Archetype entities are organized into .xml libraries, which can be created in
the editor under the Database view.

The Geom entity section
The Geom entity section is a browser similar to the brush browser but instead allows for the
placement of a very simple entity that takes its physicalization parameters from its assigned
geometry. When objects are placed as Geom entities and it have user-defined properties
(discussed later), they become interactive entities with physical values, so they can behave
like real-life objects. It is similar to a basic entity, but simpler, more efficient, and has fewer
configurable parameters.

Chapter 1

25

The Prefabs section
The Prefabs section contains the currently loaded Prefab libraries for a given level.

Prefabs are groups of objects that can be placed in the level as instances similar to archetype
entities. Altering one prefab universally applies the changes to each instance of the prefab
object. Any iteration to the prefab is required to be saved to the Prefabs library to ensure they
are correctly propagated across an entire series of levels.

The Sound section
This section contains a shortcut to the Entity/Sound section. This allows for the addition of
specific sound entities to your level.

See also
To use some of these other sections immediately, go to the Placing enemy AI recipe
in Chapter 5, Basic AI

To use the Solids section mentioned in this recipe, go to the Making basic shapes
with Solids tool recipe in Chapter 3, Basic Level Layout

Selecting and browsing level objects
To navigate levels is important, but to be able to select and browse your level objects
is essential.

To do this, we will be using the Select Objects window, which enables you to quickly search
for objects, hide, unhide, freeze, and unfreeze objects in a list type view.

Getting ready
To follow the example in this recipe, you should have the Forest.cry level loaded in the
Sandbox editor.





CryENGINE 3: Getting Started

2�

How to do it...
Let's open the Select Objects window:

1. You can access the Select Objects window by using the EditMode toolbar or in the
main menu, under View | Select Object(s).

You can also open the Select Objects window using the shortcut Control + T.

2. Press the heading of the column to sort the level objects based on that particular
heading's type. In this case, let's sort by name.

3. You will notice all the objects in the level are listed here.

4. Using the Fast Select dialog type in shrine.

5. Use the Select button to transfer selections from the object's list to the editor's
object selection.

Chapter 1

2�

6. You can now combine this with the use of the goto object button in the
object toolbar.

Remember the goto object function moves the editor view to
that object's location.

7. Reset the selection using the Reset button, which resets the selection in the table
and the editor's object selection.

How it works...
The layout of the Select Objects window is quite intuitive. It displays a list of the objects in the
currently opened level, which can be sorted by the name of the objects, the type, and the layer
the object is on or even by the material applied to the object.

CryENGINE 3: Getting Started

2�

You can also use the Select All button, which selects all the objects in the table and transfers
them to the editor's object selection.

There's more...
There are a good deal of tools available immediately in the Select Objects window; you can
browse frozen and hidden objects, the type of object, and even show dependencies.

Browsing frozen and hidden objects
You can browse through hidden or frozen objects without changing their corresponding state
using the Display list to filter them from the object table.

List types
Enables the display of certain object types (Entities, Brushes, Prefabs); use these filters to
display only the data that you need.

Display as a Tree
Indents child objects in Editor Hierarchies visually.

See also
To restore all the toolbar's windows and saved settings, you can restore Sandbox's
default settings in the next recipe

To get right to creating your first level, go to the Creating a new level recipe in Chapter
2, Sandbox Basics

Restoring the CryENGINE 3 default settings
It is important to know how to reset the settings in Sandbox to their default states.

It can occur that system paths to root builds or folders become corrupted after switching
between multiple instances of the CryENGINE 3.

This example will demonstrate how you can restore the default settings by deleting the
relevant keys in the Windows Registry editor. This step-by-step process takes you through
which keys in the registry should be removed to restore the defaults.

Getting ready
If you are trying to simply restore the Sandbox layout, please try restoring the default layout
settings from the View Menu | Layouts | Restore Default Layout.





Chapter 1

2�

Editing your registry is a very seeennnsssiiitttiiivvveee ooopppeeerrraaatttiiiooonnn!!! AAAsss sssuuuccchhh,,, yyyooouuu ssshhhooouuulllddd
back up your registry before starting this tutorial.

After this task you will have restored all Sandbox and resource compiler settings to their
default settings.

How to do it...
Depending on your Operating System version, the process of opening your PC's registry for
edit may be different:

1. To open the Windows Registry editor using Windows XP:

Click Start

Click Run

Type into the text box, regedit

Press Enter

This will now have opened your Windows Registry editor.

2. In the Registry editor, navigate to HKEY_CURRENT_USER\Software\Crytek\
Sandbox 3.









CryENGINE 3: Getting Started

30

3. When you find the folder Sandbox 3, highlight it.

4. Press Delete.

5. Now, we can restore the default folder structure automatically by navigating back to
the the Editor.exe and launching it.

How it works...
Sandbox stores various compulsory values and folders.

It is not recommended to adjust these values manually without having
in-depth knowledge of the consequences of the changes.

The registry contains some editor layout data but not all, and because of this, completely
restoring the default settings could require removal of other directories, such as the
user folder.

There's more...
Sometimes it's not required to completely reset the registry to restore some of the settings for
Sandbox. You can delete the user folder, which is explained further.

Deleting your user folder
The user folder might be needed to store user-specific data. Windows can have restrictions
on where the user can store files. For example, the program folder might not be writable
at all. For that reason, screenshots save game data and other files are typically stored in
the user folder.

You can simply delete this folder and restart Sandbox for the default settings to be restored.

See also
Resetting the registry data does not require a re-installation of the software and all
required values will be created upon the next launch of Sandbox. Go to the Starting
up the CryENGINE 3 Sandbox recipe in this chapter to do this



2
Sandbox Basics

In this chapter, we will cover:

Creating a new level
Generating a procedural terrain
Terrain sculpting
Setting up the terrain texture
Placing the objects in the world
Refining the object placement
Utilizing the layers for multiple developer collaboration
Switching to game mode
Saving your level
Exporting to an engine
Essential game objects
Running a map from the Launcher

Introduction
With the CryENGINE 3 Software Development Kit installed and ready for use, we can now get
into the more exciting bits of utilizing the Sandbox basics.

This chapter will deal with the majority of the tools you will use on a regular basis as well as
the essentials for creating new and exciting levels for your project. We will also look at the
importance of utilizing the layer system for developers to work simultaneously on the same
level. This chapter will also include the use of one of CryENGINE's greatest features of What
you see is what you play by demonstrating how you may be able to play the level that you have
created on demand.

























Sandbox Basics

32

Creating a new level
Before we can do anything with the gameplay of the project that you are creating, we first
need a foundation of a new level for the player to stand on. This recipe will cover how to
create a new level from scratch.

Getting ready
Before we begin, you must have Sandbox 3 open.

How to do it...
At any point, with Sandbox open, you may create a new level by following these steps:

1. CCCllliiiccckkk File (found in the tttoooppp---llleeefffttt ooofff ttthhheee SSSaaannndddbbboooxxx'''sss mmmaaaiiinnn tttoooooolllbbbaaarrr)))...

2. CCCllliiiccckkk New.

From here, you will see a new dialog screen that will prompt you for information on how you
want to set up your level. The most important aspect of a level is naming it, as you will not be
able to create a level wwwiiittthhhooouuuttt sssooommmeee sssooorrrttt ooofff ppprrrooopppeeerrr nnnaaammmeee fffooorrr ttthhheee llleeevvveeelll'''sss dddiiirrreeeccctttooorrryyy aaannnddd iiitttsss .cry
file. You may name your level anything you wish, but for the ease of instruction we shall refer
to this level as My_Level:

1. In the Level Name dialog bbboooxxx,,, tttyyypppeee iiinnn My_Level.

2. For the Terrain properties, use the following valuuueeesss:::

Use Custom Terrain Size: True

Heightmap Resolution:512x512

Meters Per Unit: 1

3. Click OK.







Chapter 2

33

Depending on your system specifications, you may find that creating a new level will require
anywhere from a few seconds to a couple of minutes. Once finished, the Viewport should
display a clear blue sky with the dialog in your console reading the following three lines:

Finished synchronous pre-cache of render meshes for 0 CGF's
Finished pre-caching camera position (1024,1024,100) in 0.0 sec
Spawn player for channel 1

This means that the new level was created successfully.

How it works...
Let's take a closer look at each of the options used wwwhhhiiillleee cccrrreeeaaatttiiinnnggg ttthhhiiisss nnneeewww llleeevvveeelll...

Using the Terrain option
This option allows the developer to control whether to have any terrain on the level to be
manipulated by a heightmap or not. Sometimes terrain can be expensive for levels and if any
of your future levels contain only interiors or only placed objects for the player to navigate
on, then setting this value to false will be a good choice for you and will save a tremendous
amount of memory and aid in the performance of the level later on.

Heightmap resolution
This drop-down controls the resolution of the heightmap and the base size of the play area
defined. The settings can range from the smallest resolution (128 x 128) all the way up to the
largest supported resolution (8192 x 8192).

Meters per unit
If the Heightmap Resolution is looked at in terms of pixel size, then this dialog box can also
be viewed as the Meters Per Pixel. This means that each pixel of the heightmap will be
represented by these many meters. For example, if a heightmap's resolution has 4 Meters Per
Unit (or Pixel), then each pixel on the generated heightmap will measure four meters in length
and width on the level.

Even though this Meters Per Unit can be used to increase the size of your level, it will
decrease the fidelity of the heightmap. You will notice that attempting to smoothen out the
terrain may be difficult as there will be a wider minimum triangle size set by this value.

Terrain size
This is the resulting size of the level with the eeeqqquuuaaatttiiiooonnn ooofff (((HHHeeeiiiggghhhtttmmmaaappp RRReeesssooollluuutttiiiooonnn))) xxx (((MMMeeettteeerrrsss PPPeeerrr
unit). Here are some examples of the results you will see (m = meters):

(128x128) x 4m = 512x512m
(512x512) x 16m = 8192x8192m
(1024x1024) x 2m = 2048x2048m







Sandbox Basics

34

There's more...
If you need to change your unit size after creating the map, you may change it by going into
the Terrain Editor | Modify | Set Unit Size. This will allow you to change the original Meters
Per Unit to the size you want it to be.

See also
For more information about additional terrain features refer to the Generating a procedural
terrain recipe.

Generating a procedural terrain
This recipe deals with the procedural generation of a terrain. Although never good enough for
a final product because you will want to fine tune the heightmap to your specifications, these
generated terrains are a great starting point for anyone new to creating levels or for anyone
who needs to set up a test level with the Sandbox. Different heightmap seeds and a couple
of tweaks to the height of the level and you can generate basic mountain ranges or islands
quickly that are instantly ready to use.

Getting ready
Have My_Level open inside of Sandbox.

How to do it...
Up at the top-middle of the Sandbox main toolbar, you will find a menu selection called
Terrain. From there you should see a list of options, but for now you will want to click on
Edit Terrain. This opens the Terrain Editor window.

The Terrain Editor window has a multitude of options that can be used to manipulate the
heightmap in your level. But first we want to set up a basic generated heightmap for us to
build a simple map with.

Before we generate anything, we should first set the maximum height of the map to something
more manageable. Follow these steps:

1. Click Modify.

2. Then click Set Max Height.

3. Set your Max Terrain Height to 256 (these units are in meters).

Chapter 2

35

Now, we may be able to generate the terrain:

1. Click Tools.

2. Then click Generate Terrain.

3. Modify the Variation (Random Base) to the value of 15.

4. Click OK.

After generating, you should be able to see a heightmap similar to the following screenshot:

This is a good time to generate surface texture (File | Generate surface
texture | OK), which allows you to see the heightmap with a basic texture in
the Perspective View.

Sandbox Basics

3�

How it works...
The Maximum Height value is important as it governs the maximum height at which you can
raise your terrain to. This does not mmmeeeaaannn ttthhhaaattt iiittt iiisss ttthhheee mmmaaaxxxiiimmmuuummm hhheeeiiiggghhhttt ooofff yyyooouuurrr llleeevvveeelll eeennntttiiirrreeelllyyy,,,
as you are still able to place objects well above this value. It is also important to note that if
you import a grey scale heightmap into CryENGINE then this value will be used as the upper
extreme of the heightmap (255,255,255 white) and the lower extreme will always be at
0 (0,0,0 black). Therefore the heightmap will be generated within 0 m height and the
maximum height.

Problems such as the following aaarrreee aaa cccooommmmmmooonnn oooccccccuuurrrrrreeennnccceee:::

Tall spikes are everywhere on the map or there are massive mountains and
steep slopes:

Solution: Reduce the Maximum Height to a value that is more suited to the
mountains and slopes you want

The map is very flat and has no hills or anything from my heightmap�has nnnooo hhhiiillllllsss ooorrr aaannnyyyttthhhiiinnnggg fffrrrooommm mmmyyy hhheeeiiiggghhhtttmmmaaappp:::

Solution: Increase the Maximum Height to a value that is suitable for
making the hills you wwwaaannnttt

There's more...
Here are some other settings you might choose to use while generating the terrain.

Terrain generation settings
The following are the settings to generate a procedural terrain:

Feature Size: This value handles the general height manipulations within the seed
and the size of each mound wwwiiittthhhiiinnn ttthhheee ssseeeeeeddd... AAAsss ttthhheee sssiiizzzeee ooofff ttthhheee fffeeeaaatttuuurrreee dddeeepppeeennndddsss
greatly on rounded numbers it is easy to end up with a perfectly rounded island,
therefore it is best to leave this value at 7.0.

Bumpiness / Noise (Fade)� Basicallyyy,,, ttthhhiiisss iiisss aaa nnnoooiiissseee fififilllttteeerrr fffooorrr ttthhheee llleeevvveeelll... TTThhheee gggrrreeeaaattteeerrr ttthhheee
value, the more noise will appear on the heightmap.

Detail (Passes): This vvvaaallluuueee cccooonnntttrrrooolllsss hhhooowww dddeeetttaaaiiillleeeddd ttthhheee ssslllooopppeeesss wwwiiillllll bbbeeecccooommmeee... BBByyy dddeeefffaaauuulllttt,,,
this value is very high to see the individual bumps on the slopes to give a better
impression of a rougher surface. Reducing this value will decrease the amount of
detail/roughness in the slopes seen.

Variation: This controls ttthhheee ssseeeeeeddd nnnuuummmbbbeeerrr uuussseeeddd iiinnn ttthhheee ooovvveeerrraaallllll gggeeennneeerrraaatttiiiooonnn ooofff ttthhheee TTTeeerrrrrraaaiiinnn
Heightmap. There are a total of 33 seeds ranging from 0 – 32 to choose from as a
starting base for a basic heightmap.

Blurring (Blur Passes)� This is a BBBllluuurrr fififilllttteeerrr... TTThhheee hhhiiiggghhheeerrr ttthhheee aaammmooouuunnnttt,,, ttthhheee sssmmmoooooottthhheeerrr ttthhheee
slopes will be on your heightmap.



















Chapter 2

3�

Set Water Level: FFFrrrooommm ttthhheee Terrain Editor window, you can adjjjuuusssttt ttthhheee wwwaaattteeerrr llleeevvveeelll fffrrrooommm
Modify | Set Water Level. This value changes the base height of the ocean level
(in meters).

Make Isle: TTThis tool allows you to take the heightmap from your level and
automatically lowers the border areas around the map to create an island.
From the Terrain Editor window, select Modify | Make Isle.

See also
The Terrain sculpting recipe

The Setting up the terrain texture recipe

Terrain sculpting
In this section, we will cover the basics of painting your heightmap by hand. This recipe will
teach you how to flatten, raise, lower, and smoothen the heightmap by hand, painting in both
the Terrain Editor window as well as Perspective View.

Using the Terrain Brush from the Terrain Editor is good for a general high level pass over your
level; it is only decent when starting on a fresh level. For more detailed work, many designers
use the Terrain Brush from wwwiiittthhhiiinnn ttthhheee Perspective Viewport to ssseeeeee ttthhheeeiiirrr rrreeesssuuullltttsss iiinnnssstttaaannntttlllyyy... WWWeee
will be covering both methods.

Getting ready
1. Have My_Level open inside of Sandbox.

2. Review the Generating a procedural terrain recipe to llleeeaaarrrnnn aaabbbooouuuttt ttthhheee Terrain Editor.

3. Review the Navigating a level with the Sandbox Camera recipe to get familiar wwwiiittthhh ttthhheee
Perspective View.

4. Have the Rollup Bar available in your Sandbox layout and ready.

How to do it...
On the right-hand side of this window you will see a rollout menu that reads Terrain Brush.
This menu is the focal point of this recipe and has the same functions in both the Terrain
Editor and Perspective View methods.

1. To start, we will flflflaaatttttteeennn aaa ssseeeccctttiiiooonnn ooofff ttthhheee llleeevvveeelll... CCChhhaaannngggeee ttthhheee a section of the level. Change the Type of brush (drop-down
menu to Flatten) and ssseeettt ttthhheee fffooollllllooowwwiiinnnggg pppaaarrraaammmeeettteeerrrsss:::

Outside Radius = 50

Inside Radius = 50













Sandbox Basics

3�

Hardness = 1

Height = 30

2. Now paint over ttthhheee nnnooorrrttthhh---wwweeesssttt cccooorrrnnneeerrr ooofff ttthhheee mmmaaappp aaannnddd flflflaaatttttteeennn ttthhhaaattt wwwhhhooollleee qqquuuaaarrrttteeerrr ooofff
the map.

3. Change the Type of brush to Smooth and set the following parameters:
Outside Radius = 50
Hardness = 0.7

4. Between the flattened area and the rest of the generated heightmap, paint over this
area, which wwwiiillllll sssmmmoooooottthhheeennn ttthhheee ssslllooopppeee bbbeeetttwwweeeeeennn ttthhheee lllooowwweeerrr flflflaaatttttteeennneeeddd aaarrreeeaaa aaannnddd ttthhheee hhhiiiggghhheeerrr
up locations.

5. Change the Type of bbbrrruuussshhh tttooo Raise/Lower and set the following parameters:
Outside Radius = 30
Inside Radius = 25
Hardness = 0.4
Height = 1

















Chapter 2

3�

6. In the Flattened area, paint around in the same spot to see the heightmap rise.

7. Sculpt the terrain in the perspective view. TTThhheee Perspective View method has the very
same brushes as demonstrated previously, except you can find where to change them
in the Rollup Bar under the Terrain tab | Modify button.

How it works...
Even though each of the brush's functions are self-explanatory based on their name, they
share many of the same properties. These properties are Outside Radius, Inside Radius,
Hardness, and Height (with the exception of Smooth). The following is what each of these
properties does:

Outside Radius: The ouuuttteeerrr eeedddgggeee ooofff ttthhheee bbbrrruuussshhh ttthhhaaattt wwwiiillllll fffeeeeeelll ttthhheee llleeeaaasssttt iiimmmpppaaacccttt fffrrrooommm ttthhheee
rest of the brush's parameters.

Inside Radius: The inner area that will feel the most impact. Depending on Hardness
and Height, there is a fall off between the Inside Radius and Outside Radius.





Sandbox Basics

40

To create steeper mounds, hills, or mountains, set the
inside and outside radius to be close to each other. To get
more shallow and smoother hills, set inside and outside
radius further apart.

Hardness: How hard should the brush be when painting? Basically, if the Hardness is
set to 1, then within one click you will have the desired height. If set to 0.01, then it
will take 100 clicks to achieve the same result. (For smooth, this controls how hard it
will try to normalize the triangles of the heightmap).

Height: This controls the desired height you wish the Flatten tool to set the terrain to,
or controls the step size (meters) of the Raise/Lower tool.

There's more...
Here are some other additional settings you may wish to use when sculpting a terrain.

Noise settings
Enabling Noise only works with the Flatten and Raise/Lower brushes. This setting adds a bit
of random variation to the heightmap when painting with these brushes.

Scale (%)� Howww hhhiiiggghhh���lllooowww ttthhheee nnnoooiiissseee mmmooodddiiififificccaaatttiiiooonnn wwwiiillllll bbbeee

Frequency (%): Howww ooofffttteeennn ttthhheee nnnoooiiissseee wwwiiillllll vvvaaarrryyy ttthhheee hhheeeiiiggghhhttt aaalllooonnnggg ttthhheee sssuuurrrfffaaaccceee ooofff
the terrain

Reposition objects and vegetation
Enabling either of these tickboxes will reposition the Object/Vegetation after the height
underneath that Object/Vegetation has changed (this does not work if the object is
underneath the terrain).

All vegetation that is affected is under the Terrain | Vegetation tab in the Rollup Bar.

All objects affected are under the Objects tab in the Rollup Bar.

See also
The Generating a procedural terrain recipe

The Navigating a level with the Sandbox Camera recipe in Chapter 1, CryENGINE 3:
Getting Started.













Chapter 2

41

Setting up the terrain texture
In this recipe, we will teach you how to set up a new grass-like terrain texture for you to paint
on the terrain.

Getting ready
1. Have My_Level open inside of Sandbox.

2. Review ttthhheee Generating a procedural terrain recipe to learn about the Terrain Editor.

3. Review ttthhheee Navigating a level with the Sandbox Camera recipe to gggeeettt fffaaammmiiillliiiaaarrr wwwiiittthhh ttthhheee
Perspective View.

4. Review ttthhheee Terrain sculpting recipe.

5. Have the Rollup Bar open and ready.

How to do it...
1. First ooopppeeennn ttthhheee Terrain Texture Layers wwwiiinnndddooowww,,, fffooouuunnnddd iiinnn ttthhheee mmmaaaiiinnn Sandbox Toolbar |

Terrain | Texture.

2. In this window, create a nnneeewww lllaaayyyeeerrr———Add Layer.

3. Rename yyyooouuurrr NewLayer to Grass (double-click NewLayer to rename it).

4. Then change the layer texture ooofff ttthhhiiisss lllaaayyyeeerrr::: Change Layer Texture | Terrain Folder |
ground_mud_grey.dds.

5. NNNooowww ccchhhaaannngggeee ttthhheee dddeeetttaaaiiilll ttteeexxxtttuuurrreee;;; cccllliiiccckkk ooonnn ttthhheee mmmaaattteeerrriiiaaalll pppaaattthhh fffooorrr ttthhhiiisss lllaaayyyeeerrr,,, Materials/
material_terrain_default | Terrain Folder | grass_7. Go back to Terrain Texture
Layers window | Assign Material.

6. Set up your layer to have a gggrrreeeeeennniiissshhh cccooolllooorrr tttooo iiittt———RollupBar | Terrain tab | Layer
Painter | select Grass. SSSeeettt ttthhheee cccooolllooorrr iiinnn ttthhheee cccooolllooorrr bbboooxxx tttooo Red: 191, Green: 215,
Blue: 138.

7. Save the color to your layer and click the Layer button above the color box.

Sandbox Basics

42

8. Paint on your ttteeerrrrrraaaiiinnn...

How it works...
The Layer Texture and Detail Texture work together in an overlapping fashion to breathe
life into the terrain texture that is applied onto the terrain. While the Layer Texture works
best as an overall brightness randomizer (seen with the ground_mud_grey texture) to break
up the distant tiling, the Detail Texture is the main texture that is seen when closest to the
player's view.

It is important to note that the Detail Texture should provide the detail only and not so much
of the color (the color is handled in the Layer Texture). GGGrrraaayyyiiissshhh ttteeexxxtttuuurrreeesss wwwiiittthhhiiinnn ttthhheee dddeeetttaaaiiilll
material do not interfere with the colors from the Layer Texture. Each of these diffuse
textures should be high pass filtered.

There's more...
Here are some additional settings that can be utilized.

Radius and Hardness: MMMuuuccchhh llliiikkkeee SSScccuuulllppptttiiinnnggg TTTeeerrrrrraaaiiinnn,,, yyyooouuu cccaaannn ccchhhaaannngggeee ttthhheee bbbrrruuussshhh sssiiizzzeee aaannnddd
hardness in the Layer Painter to either a blanket wide area with your Terrain Texture,
or just to get those fine details where you need them.

Altitude and Slope: These parameters can be set per layer allowing you to only paint that
layer within the Altitude (meters) or Slope (degrees) threshold. This is especially useful for
cliff-like layers (for example, 55 to 90).

Chapter 2

43

Filter (Brightness): The Filter slider is an extra brightness pass on the color you have already
set. Without needing to change the color over and over, you may change the brightness
quickly with this slider.

Tile Resolution: Tile Resolution affects how many terrain tiles are in each terrain sector. The
higher the resolution, the higher the amount of tiles used (better layer blending as well as
softer transitions in the Layer Texture).

Ranging from 64x64 to 2048x2048, this tiling resolution is an important factor when it comes
to optimization as well as high quality terrain. It is recommended that you use a higher value
for play areas of your map and low values for terrain sectors that will not have the player in it.

Generating Surface Textures: It is important after doing work with the Terrain Textures
on your map to a Generate Surface Texture to bake your textures into your terrain. This
creates a compressed version of your painted terrain texture jjjooobbb iiinnntttooo aaa .pak file called
terraintexture.pak. The information stored in this .pak file reduces the total terrain
texture size of the map to 1/6 of its original size as well as reducing the amount of drawcalls
on the level.

To generate surface textures, go to File | Generate Surface Texture | Pick resolution (higher
= better quality, lower performance) | (Optional) High Quality (does an additional pass over
the textures to bake in further detail while keeping the same memory footprint) | OK.

See also
The Terrain sculpting recipe
The Saving your level recipe

Placing the objects in the world
Placing objects is a simple task; however, basic terrain snapping is not explained to most new
developers. It is common to ask why, when dragging and dropping an object into the world,
they cannot see the object. This section will teach you the easiest ways tttooo ppplllaaaccceee aaannn ooobbbjjjeeecccttt iiinnntttooo
your map by using the Follow Terrain method.

Getting ready
1. Have My_Level open inside of Sandbox (after completing either of the Terrain

sculpting or Generating a procedural terrain recipes).
2. Review the Navigating a level with the Sandbox Camera recipe to get fffaaammmiiillliiiaaarrr wwwiiittthhh ttthhheee

Perspective View.
3. Have ttthhheee Rollup Bar open and ready.
4. Make sure you have the EditMode ToolBar open (right-click the top main ToolBar and

tick EditMode ToolBar).





Sandbox Basics

44

How to do it...
First select the Follow Terrain button. Then open the Objects tab withinnn ttthhheee Rollup Bar.
Now from the Brushes browser, select any object you wish to place down (for example,
defaults/box).

You may either double-click the object, or drag-and-drop it onto the Perspective View. Move
your mouse anywhere where there is visible terrain and then click once more to confirm the
position you wish to place it in.

How it works...
The Follow Terrain tool is a simple tool that allows the pivot of the object to match the exact
height of the terrain in that location. This is best seen on objects that have a pivot point close
to or near the bottom of them.

There's more...
You can aaalllsssooo fffooollllllooowww ttteeerrrrrraaaiiinnn aaannnddd sssnnnaaappp tttooo ooobbbjjjeeeccctttsss...TTThhhiiisss mmmeeettthhhoooddd iiisss vvveeerrryyy sssiiimmmiiilllaaarrr tttooo ttthhheee Follow
Terrain method, except that this also includes objects when placing or moving your
selected object.

This method does not work on non-physicalized objects.

See also
The Refining the object placement recipe

Refining the object placement
After placing the objects in the world with just the Follow Terrain or Snapping to Objects, you
might find that you will need to adjust the position, rotation, or scale of the object. In this
recipe, we will show you the basics of how you might be able to do so along with a few hotkey
shortcuts to make this process a little faster. This works with any object that is placed in your
level, from Entities to Solids.



Chapter 2

45

Getting ready
1. Have My_Level open inside of Sandbox (after completing either the Terrain sculpting

or Generating a procedural terrain recipe).

2. Review the Navigating a level with the Sandbox Camera recipe to get fammmiiillliiiaaarrr wwwiiittthhh ttthhheee
Perspective View.

3. Make sure you have the EditMode ToolBar open (right-click on the top main ToolBar
and tick EditMode ToolBar).

4. Place any object in the world.

How to do it...
In this recipe, we will call your object (the one whose location you wish to refine) Box for ease
of reference.

1. Select Box.

2. After selecting Box, you should see a three axis widget on it, which represents each
axis in 3D space. By default, these axes align to the world:

Y = Forward

X = Right

Z = Up

To move the Box in the world space and change its position, proceed with the following steps:

3. Click on the Select and Move icon in the EditMode ToolBar (1 for the keyboard
shortcut).

4. Click on the X arrow and drag your mmmooouuussseee uuuppp aaannnddd dddooowwwnnn rrreeelllaaatttiiivvveee tttooo ttthhheee aaarrrrrrooowww'''sss
direction.

5. Releasing the mouse button will confirm the location change.location ccchhhaaannngggeee...

You may move objects either on a single axis, or two at once by clicking and dragging on
the plane that is adjacent to any two axes: X + Y, X + Z, or Y + Z. To rotate an object, do
the following:

1. Select Box (if you haven't done so already).

2. Click on the Select and Rotate icon in the EditMode ToolBar (2 for the keyboard
shortcut).

3. Click on ttthhheee Z arrow (it now hasss aaa sssppphhheeerrreee aaattt ttthhheee eeennnddd ooofff iiittt))) aaannnddd dddrrraaaggg yyyooouuurrr mmmooouuussseee fffrrrooommm
side to side to roll the object relative to the axis.

4. Releasing ttthhheee mmmooouuussseee bbbuuuttttttooonnn wwwiiillllll cccooonnnfififirrrmmm ttthhheee rrroootttaaatttiiiooonnn ccchhhaaannngggeee...







Sandbox Basics

4�

You cannot rotate an object along multiple axes. To scale an object, do the following:

1. Select Box (if you haven't done so already).

2. Click on the Select and Scale icon in the EditMode ToolBar (3 for the
keyboard shortcut).

3. Click on the CENTER box and drag your mouse up and down to scale on all three axes
at once.

4. Releasing ttthhheee mmmooouuussseee bbbuuuttttttooonnn wwwiiillllll cccooonnnfififirrrmmm ttthhheee ssscccaaallleee ccchhhaaannngggeee...

It is possible to scale on just one axis or two axes; however, this is highly discouraged as
Non-Uniform Scaling will result in broken physical meshes for that object. If you require an
object to be scaled up, we recommend you only scale uniformly on all three axes!

There's more...
Here are some additional ways to manipulate objects within the world.

Local position and rotation
To make position or rotation refinement a bit easier, you might want to try changing how the
widget will position or rotate your object by changing it to align itself relative to the object's
pivot. To do this, there is a drop-down menu in the EditMode ToolBar that will have the option
to select Local. This is called Local Direction.

This setup might help to position your object after you have rotated it.

Grid and angle snaps
To aid in positioning of non-organic objects, such as buildings or roads, you may wish to turn
on the Snap to Grid option. Turning this feature on will allow you to move the object on a grid
(currently relative to its location). To change the grid spacing, click the drop-down arrow next
to the number to change the spacing (grid spacing is in meters).

Angle Snaps is found immediately to the right of the Grid Snaps. Turning this feature on will
allow you to rotate an object by every five degrees.

Ctrl + Shift + Click
Even though it is a Hotkey, to many developers this hotkey is extremely handy for initial
placement of objects. It allows you to move the object quickly to any point on any physical
surface relative to your Perspective View.

Chapter 2

4�

See also
The Placing the objects in the world recipe

Utilizing the layers for multiple developer
collaboration

A common question that is usually asked about the CryENGINE is how does one developer
work on the same level as another at the same time. The answer is—Layers. In this recipe,
we will show you how you may be able to utilize the layer system for not only your own
organization, but to set up external layers for other developers to work on in parallel.

Getting ready
1. Have My_Level open inside of Sandbox (after completing either the Terrain sculpting

or Generating a procedural terrain recipe)))...

2. Review the Navigating a level with the Sandbox Camera to get familiar with the
Perspective View.

3. Review the Using the Rollup Bar recipe.

4. Have the Rollup Bar open and rrreeeaaadddyyy...

5. Review the Placing the objects in the world (place at least two objects) recipe.

How to do it...
1. For this recipe, we will assume that you have your own repository for your project or

some mmmeeeaaannnsss tttooo ssseeennnddd yyyooouuurrr wwwooorrrkkk tttooo ooottthhheeerrrsss iiinnn yyyooouuurrr ttteeeaaammm...

2. First, start by placing down two objects on the map. For the sake of the recipe, we
shall rrreeefffeeerrr tttooo ttthhheeemmm aaasss Box1 and Box2. After you've placed both boxes, open the
Rollup Bar and bring up the Layers tab.

3. Create a new layer by clicking the New Layer button (paper with a + symbol).

4. A New Layer dddiiiaaallloooggg bbboooxxx wwwiiillllll aaappppppeeeaaarrr... GGGiiivvveee iiittt ttthhheee fffooollllllooowwwiiinnnggg pppaaarrraaammmeeettteeerrrsss:::

Name = ActionBubble_01

Visible = TTTrrruuueee

External = TTTrrruuueee

Frozen = FFFaaalllssseee

Export To Game = True













Sandbox Basics

4�

5. Now select Box1 and ooopppeeennn ttthhheee Objects tab wiiittthhhiiinnn ttthhheee Rollup Bar.

6. From here you will see in the main rollup of this object with values such as – Name,
Helper Size, MTL, and Minimal Spec. But also in this rollup you will see a button for
layers (it should be labelled as Main). Clicking on that button will show you a list of all
other available layers.

7. Clicking again on another layer that is not highlighted will move this object to that
layer (do this now by clicking on ActionBubble_01).

8. Now save your level by cccllliiiccckkkiiinnnggg———File | Save.

There is important information about saving your level in that recipe.
Please make a note to review it.

Now in your build folder, go to the following location: -... \Game\Levels\My_Level.
From here you will notice a new folder called Layers. Inside that folder, you will see
ActionBubble_01.lyr.

This layer shall be the layer that your other developers will work on. In order for them to be
able to do so, you must first commit My_Level.cry and the Layers folder to your repository
(it is easiest to commit the entire folder).

After doing so, you may now have your other developer make changes to that layer by moving
Box1 to another location. Then have ttthhheeemmm sssaaavvveee ttthhheee mmmaaappp...

Have them commit only the ActionBubble_01.lyr to the repository. Once you have
retrieved it from the updated repository, you will notice that Box1 will have moved after
you have re-opened My_Level.cry in the Editor with the latest layer.

How it works...
External layers are the key to this whole process. Once a .cry file has been saved to
reference an external layer, it will access the data inside of those layers upon loading
the level in Sandbox.

It is good practice to assign a Map owner who will take care of the .cry file. As this is the this is the
master file, only one person should be in charge of maintaining it by creating new layers
if necessary.

There's more...
Here is a list of limitations of what external layers cannot hold.

Chapter 2

4�

External layer limitations
Even though any entity/object you place in your level can be placed into external layers, it is
important to note that there are some items that cannot be placed inside of these layers.
Here is a list of the common items that are solely owned by the .cry file�

Terrain
Heightmap
Unit Size
Max Terrain Height
Holes
Textures

Vegetation
Environment Settings (uuunnnllleeessssss fffooorrrccceeeddd ttthhhrrrooouuuggghhh GGGaaammmeee LLLooogggiiiccc)))

Ocean Height
Time of Day Settings (unless forced through Game Logic)
Baked AI Markup (The owner of ttthhheee .cry file must regenerate AI if new markup is
created on external layers)
Minimap Markers

See also
The Saving your level recipe

The Exporting to an engine recipe

The Essential game objects recipe

Switching to game mode
CryENGINE prides itself on the saying What you see is what you play, and the switching to
game mode is a testament to this.

It goes without saying that testing your work often is the key to a successful project, and the
quick easy use of switching to Game Mode within the Editor allows you to test at will without
the need to close Sandbox.

Even though the Editor is built with this feature to allow Developers to check their work, this
is still only an emulation. This means that there are several special editor rules and debug
options available in this mode, which isn't fully representative of what the Player might see in
the Pure Game. Even though it is an excellent idea to test often by switching to Game Mode,
it is also important to do any final testing in the Launcher on your target platform to have a
proper Pure Game experience.































Sandbox Basics

50

In this recipe, we will cover the simple, but highly important use of switching to game mode.
This function allows you to jump into your level instantly, and allows you to test what the player
will see, hear, and feel within the location you are at with your Perspective Camera.

Getting ready
Have My_Level open inside of Sandbox (after completing either the Terrain sculpting or
Generating a procedural terrain recipe).

Review the Navigating a level with the Sandbox Camera to get familiar with the
Perspective View.

How to do it...
In the Sandbox main toolbar, find Game | Switch to Game or click on Ctrl + G. IIIttt'''sss
that simple.

Game Logic can change the player's initial spawning location. If this logic
is enabled, then you will be forced to spawn at this location as well when
entering game mode.

See also
The Essential game objects recipe

The Running a map from the Launcher recipe

Saving your level
On the surface, saving your level seems like a simple process; however, there are a few
important functionalities that you should be aware of when saving your level. This recipe
will show you how to do a basic saving, copying/moving your level (do not use Save As),
and auto backups.

Getting ready
Have any level open inside Sandbox.

Open Windows Explorer to the following location: ...\CryENGINE_Build\Game\Levels.





Chapter 2

51

How to do it...
To save a level, go to File | Save.

Ctrl + S does not work by default. You will need to set up a shortcut key
yourself for that.

When copying/moving levels:

1. Initially, save your level to its default location.

2. Go to the level's location in Windows Explorer (…\Game\Levels).

3. Using Windows commands copy/cut the entire My_Level folder.

4. Paste the level into the location you want.

5. If necessary, rename both the My_Level folder and My_Level.cry to something
you prefer.

We recommend that you never perform a Save As for your level. Unfortunately, there are
several dependencies (Level.pak, TerrainTexture.pak, Layers, Minimap images, and so on) that
do not get moved or relink themselves when a Save As is performed. They are all dependent
on the folder in which they are placed. If you do this, you will see several anomalies within
your level (broken textures, bugs in game logic, missing assets).

When creating a backup, remember that by default, Sandbox creates My_Level.bak files
after the second/third time your level is saved. These .bak files are essentially the previous
saves of your .cry file.

If, for whatever reason, you need to revert back to a previous save of your level, you may
delete your My_Level.cry file and rename My_Level.bak# to My_Level.cry and
reopen your level inside of Sandbox.

Also, by default, Sandbox creates up to two previous revisions (My_Level.bak and
My_Level.bak2).

How it works...
By default, all levels are saved in their own folder inside of ...\Game\Levels by their level
name. For example, My_Level will have its own folder with the level's folder. Once saved,
each level will also contain a *.cry file, with the * being the name of the level as well. Each
of these .cry files hold all the relevant information that is required to make up your level
(much like a blueprint for your level).

Sandbox Basics

52

There's more...
Depending on your work style, you might want to enable the Auto Backup system. This
will automatically save your work every X minute interval with the name of your choice
(Autobackup by default) into your level's folder. These Auto Backups will save continuously
as long as your editor is open or you turn this feature off.

To access this feature,,, ooopppeeennn Sandbox | Tools | Preferences | General/Files | Auto Backup.

Exporting to an engine
Even though saving your level will create a .cry file for you, it is extremely important to note
that a .cry alone will not work in the Launcher. For that you will need to perform this recipe,
which will create the required files to run in Pure Gamemode.

Getting ready
Have My_Level open inside Sandbox.

How to do it...
Go to File | Export to Engine or click on Ctrl + E.

How it works...
This crucial step is required to convert all the blueprint's setup in your .cry file into ato a
level.pak inside of the My_Level folder to be used in Pure Gamemode. This level.pak
is basically a cache of data for the game to use, which houses all the baked information about
Game Logic, AI Markup, Particle list, Brush list, and so on.

There's more...
Here is some useful information that you should know about .pak files.

Opening .pak files
It is possible to open these .pak files and see the information stored inside them by
using third-party compression software, such as WinZIP and WinRAR. However, we do
not recommend doing this unless you are familiar with handling the files you may wish to
manually change. If you do change the files that are inside of these .pak files, you run the
risk of damaging the .pak file and breaking your level for the Launcher.

Chapter 2

53

Corrupted .pak files should be deleted and re-exported
There is no need to panic if, for whatever reason, any of your .pak files become corrupted and
unusable in Pure Gamemode. You can always delete them and generate a new one from your
My_Level.cry by repeating this recipe.

Essential game objects
Even though we covered how to export your level to be used in Pure Gamemode, you may
find that when you launch your level, you are not in the correct location in the map. This quick
recipe will show you how to create a Spawn point for Pure Gamemode and also remind you
the importance of having a physical surface to spawn on.

Getting ready
1. Have My_Level open inside of Sandbox (after completing either the Terrain sculpting

or Generating a procedural terrain recipe).

2. Review the Navigating a level with the Sandbox Camera to get familiar with the
Perspective View.

3. Review the Placing the objects in the world and Refining object placement recipes.

4. Have the Rollup Bar available in your Sandbox layout and ready.

How to do it...
Unless your game supports some sort of Player flying mechanic, we recommend you choose
a location where the Player can stand when he initially spawns within your level. Any physical
surface (Floor, Roof, Terrain, Rock, and so on) will do.

To place a Spawn Point follow these steps:

1. Go to your Rollup Bar.

2. Open the Objects tab and click the Entity button.

3. Open the Others folder in the Entity List.

4. Place Spawn Point in the location you wish to spawn the player.

How it works...
This initial spawn point will automatically work as the main spawn point for your map in Pure
Gamemode (as long as you keep to the default SinglePlayer.lua gamerules). If you jump
into your map from the Launcher now, you will be spawned at this location.

Sandbox Basics

54

Any additional spawn points will not function unless there is some game logic hooked into
their functionality.

See also
The Running a map from the Launcher recipe

Running a map from the Launcher
The final recipe in this chapter will cover how you may access the Pure Gamemode version of
My_Level from the Launcher.

Getting ready
You must have a map with a working spawn point (otherwise you will spawn at 0,0,0), that has
been exported from the engine with aaa fffuuunnnccctttiiiooonnnaaalll level.pak.

The level must also be inside your Build folder.

How to do it...
1. From Windows Explorer, open either ...\Bin32 or ...\Bin64.

2. Launch the executable Launcher.exe.

3. Open the console (~).

4. Type the following: map My_level.

5. Then press Enter.

This will load the map as well as spawn you in the spawn point that was provided.

See also
The Starting up the CryENGINE 3 Sandbox recipe

The Essential game objects recipe

The Saving your level recipe

The Exporting to an engine recipe











3
Basic Level Layout

In this chapter, we will cover:

Making basic shapes with the Solids tool

Combining the solids to make white box assets

Grouping the objects

Utilizing the Geom entities instead of Brushes

Road construction

Painting vegetation

Breaking up tiling with Decals

Making caves with Voxels

Creating Prefabs to store in the external libraries

Introduction
Now that we've mastered the CryENGINE 3 Sandbox basics, we can move on to adding
particular objects and utilizing certain tools that will give the level the feel of a real level. In
this chapter, we will look at how you will be able to utilize these objects and tools to visually
make up a level that looks like something more than just a test map.



















Basic Level Layout

5�

Making basic shapes with the Solids tool
An essential tool for any level designer is the Solids tool. This tool can be regarded as a very
simplistic shape creator. Ideally, you will eventually want to get an artist to build the proper
asset for you in other external 3D applications. However, by using the Solids tool, you will
still be able to create simplistic white box assets to get both the object's volume footprint
and dimensions.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

How to do it...
1. In the RollupBar, click on the Solid button.

2. With the Follow Terrain enabled and Grid snap set to 1 meter, click and drag
anywhere on your terrain.

3. Create a 30x30x30 meter cube by following the measured size displayed on
each axis.





Chapter 3

5�

How it works...
The Solids tool is a very basic geometry creation tool within the editor. It allows you to create a
multitude of different shapes that all have their own physical proxies tied to them. You can use
these shapes to form complicated objects and merge them together, allowing you to export
them with their size intact for an artist to later create into an asset; however, this step will be
explained later.

There's more...
Here are some additional properties you may add to the solids when creating them.

Other shapes—cone, sphere, cylinder
When creating a new solid, boxes aren't the only shape. You will be able to create shapes such
as cones, spheres, and cylinders.

Number of sides—only for cone, sphere, cylinder
The Num Sides parameter is used to define how many sides you want your solid to have. This
parameter only changes the initial number of sides the shape will have for cones, spheres,
and cylinders.

See also
The Editing and Merging Solids recipe

Editing and merging solids
The next step is modifying your solids to what you want them to portray. We will be exploring
the possibilities of both editing the solids as well as setting them up to be exported for an
external 3D application, such as 3DS Max.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Create a Box Solid with dimensions of 30mx30mx30m









Basic Level Layout

5�

How to do it...
For those who are familiar with DCC tools, such as 3DS Max or Maya, Editing Mode should
look very familiar. It allows you to modify the shape of the solid by changing the location
of vertices, edges, faces, and polygons. For those who are unfamiliar with it, we will now
demonstrate how to turn this Cube into a very simplistic house-like structure:

1. SSStart by selecting your object and clicking Editing Mode.

2. Change the Selection Type to Polygon.

3. Select the top side of the cube.

4. Under the Sub Object Edit roll out, select Face [Split].

5. Change your Selection Type from Polygon to Vertex.

6. Select the top most Vertex (it should be the newly created one in the centre of the
face that was split) and drag it up a little on the Z Axis, so that the total height of the
Solid is now 40 meters.

7. CCChhhange your Selection Type back to Polygon.

8. Select the bottom face and move it up to the point where the total height of the solid
is now 20 meters:

Chapter 3

5�

9. Place the solid back onto the ground.

You may copy solids and place them anywhere on your level as they too follow the same basic
object placement methods used in the Editor. You may also create additional solids that clip
through the faces of other solids without interfering with the physics of either solid. This allows
you to stack multiple basic shapes of the solids to form the very basic shapes required for an
object, or form elaborate structures. Now, let's create one by making a very basic chimney for
the house we created:

1. Create a new Box Solid with the dimensions of 5x7x10 meters.

2. With the new Box selected, move it to any place on the roof you'd like.

Shift + Click on the roof to move the object to that
physical surface.

Basic Level Layout

�0

Even after creating multiple solids and perhaps just stacking them on top of each other for a
shape that you want, it won't combine them into a single mesh for the artists to look at within
their DCC. To do this, first we need to merge the objects into a single mesh�

1. Select both the solids.

2. In the Solid Parameters rollout, click the Misc [Merge] button.

There's more...
These are some ways you can export your solid to directly port over to a DCC toolkit.

Exporting the selected geometry to .OBJ
To export the selected geometry placed inside the Editor, click on File | Export selected
geometry to .OBJ. This allows you to export the newly merged solid for an artist to take and
remake it into a real game asset, all the while keeping to the dimensions you've made from
the Solids tool.

Resetting the XForm
If any of your solids were rotated/scaled, you may wish to reset the XForm before exporting
the Geometry. This makes sure that all of the transformations on the solid are zeroed out and
reset to the world coordinates. If this step is not taken before the Export, you may find that the
object will be misaligned when opened with an external DCC.

See also
The Making basic shapes with the Solids tool recipe

Grouping the objects
This is a simple but extremely useful tool for any designer who wants to move multiple objects
at the same time without always having to select all of them. This is also another way to keep
objects aligned to one another when rotating.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Place two objects of any kind near each other (Brush, solid, and so on)









Chapter 3

�1

How to do it...
1. Select both the Objects.
2. On the Top Main toolbar, click Group | Group.
3. Give it the name MyFirstGroup.

How it works...
The Group tool allows you to group objects together and move them in unison as if they
were one object. You can also clone groups, which makes it easier to populate an area with
similar objects.

There's more...
Without ungrouping the objects, it's still possible to change any of the properties of an object
within that group. Simply Open the group and select the object you wish to manipulate inside.

To close the group, select the group and click the Close button.

See also
The Creating Prefabs to store in the external libraries recipe

Utilizing the Geom entities instead of
brushes

In this recipe, we will show you how to place a Geom entity in your level for later use in the
FlowGraph, which will be handled in a different recipe.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

How to do it...
1. From the RollupBar, click Geom Entity.
2. Place down the default/box object.
3. Right-click the box object and select Create Flow Graph.
4. Name your FlowGraph My_Box_FG.







Basic Level Layout

�2

How it works...
Using the Geom entities instead of standard brushes is usually reserved for when a designer
wishes to perform some game logic or functions on an object. Anything from FlowGraph
Scripting to Trackview animations requires the use of entities and cannot manipulate brushes.

Geom entities are very basic entities that can be of any object type (((.cgf, .cga, .chr),
whereas brushes are usually reserved for static meshes (.cgf). Even though Geom entities
have very few properties associated with them, they are still entities within the world. And
having too many entities in the world tends to add to a performance drop within the game.
This is why static objects should always be brushes instead of Geom entities.

See also
The Creating a new Trackview Sequence recipe

The Game Logic Chapter recipe

Road construction
In this recipe, we will explore the basic uses of the Road tool and how to paint down paths that
are easy for the player to recognize.

Getting ready
Before we begin, you must have Sandbox 3 open
Then open My_Level.cry

How to do it...
1. From the RollupBar, open the Objects tab.
2. Select the Misc button.
3. From the Object Type, select Road.
4. Make sure you are set to Align to Terrain.
5. Click down three points in roughly a straight line.
6. Double-click for the fourth point to finalize the road.
7. Open the Material Editor (M).
8. Assign the material materials | Terrain | roads | road_asphalt01 to the road.









Chapter 3

�3

How it works...
The Road tool is a spline that projects a repeating texture along the terrain surface.

There's more...
The following are some of the definitions to the parameters for the road as well as how you
can edit the shape of the road.

Road parameters
Width: This is the width of the road in meters.

StepSize: This affects the tiling amount on the road. It is used for both the texture
and the curves on the road.

TileLength: This affects the stretching amount in just the road texture.

SortPriority: This determines thhheee ppprrriiiooorrriiitttyyy ooofff wwwhhhiiiccchhh ppprrrooojjjeeecccttteeeddd ttteeexxxtttuuurrreee ssshhhooouuulllddd bbbeee
displayed on top (Decals match this priority range).









Basic Level Layout

�4

Shape editing
You may make modifications to any pre-existing road by selecting it and turning on Edit
from the Shape Editing menu item. The Road tool's spline is affected by where the points
are situated between each other. From the X and Y locations of the points, curves are
automatically created and projected against the ground. The Z axis makes little difference in
the way the road is projected onto the terrain; however, it is still a good practice to maintain
the road spline above and close to the terrain surface.

Adding Points: Ctrl + click to add additional points.

Angle: You may change the angle at which the projection of the road is casted. The
angles range from -25 to +25.

Individual Point Width: Turning off the Default width option will enable you to adjust
the width of the individual points on the road.

Align Height Map
This tool is extremely useful for any designer who wishes to quickly align his/her height map to
the Z locations on the road. This is also an excellent method for making ramps.

See also
The Terrain Sculpting recipe in Chapter 2, Sandbox Basics.

Painting vegetation
In this recipe, we will be showing you how you may bring some life to the your level's
environment by painting down vegetation objects, such as trees.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

How to do it...
1. From the RollupBar, open the Terrain tab.

2. Click the Vegetation button.













Chapter 3

�5

Before we can paint the vegetation down, we must first add
in some objects that we want to use as vegetation. The first
vegetation we will place down will be some trees.

3. Click on the Add Vegetation Category.

4. Name the new category as Trees.

5. Select the newly created Trees category.

6. Click the Add button (page with the +).

7. Navigate to .../Objects/Natural/trees/river_tree.

8. Ctrl + click on river_tree_a, b, c, and d.cgf.

9. Click Open.

All of the highlighted trees have now been placed in this category. You can now start painting
with a few of the selected trees, or select the entire category to paint everything within. We
shall demonstrate this by selecting the entire category:

1. Select the Trees category.

2. Set the Brush radius to 50%.

3. Click Paint Objects.

4. Click somewhere on your terrain.

You have now painted a small grove.

Basic Level Layout

��

How it works...
The vegetation painter is a lot like placing brushes into a level. The major difference between
the two is that the vegetation paint allows you to paint multiple objects at a time while
following ONLY the terrain, whereas brushes allow you to place one object at a time, but in any
location/direction you desire. It is possible to use objects other than just trees or grass for the
vegetation painter, but keep in mind that you will not have the same control as with brushes.

There's more...
Here are the definitions to the vegetation parameters.

Vegetation parameters
Size: This is the ratio ooofff hhhooowww bbbiiiggg ttthhheee ooobbbjjjeeecccttt iiisss fffrrrooommm iiitttsss ooorrriiigggiiinnnaaalll sssiiizzzeee (((111 === dddeeefffaaauuulllttt
object size).

SizeVar: This is a random vvvaaarrriiiaaatttiiiooonnn iiinnn sssiiizzzeee ttthhhaaattt iiisss pppaaaiiinnnttteeeddd dddooowwwnnn aaafffttteeerrr tttaaakkkiiinnnggg ttthhheee Size
parameter. For example, Size = 2, SizeVar = 0.3. The final size of painted objects vary
between 1.7 to 2.3.

RandomRotation: This raaannndddooommmiiizzzeeesss ttthhheee rrroootttaaatttiiiooonnn ooofff ttthhheee pppaaaiiinnnttteeeddd ooobbbjjjeeeccctttsss ttthhhaaattt
are placed...

AlignTo Terrain: This aligns ttthhheee ooobbbjjjeeeccctttsss tttooo ttthhheee NNNooorrrmmmaaalll ooofff ttthhheee ttteeerrrrrraaaiiinnn sssuuurrrfffaaaccceee...

UseTerrainColor: This adapts ttthhheee ttteeerrrrrraaaiiinnn cccooolllooouuurrr aaannnddd aaappppppllliiieeesss iiittt ooovvveeerrr ttthhheee tttoooppp ooofff ttthhheee
diffuse color on the object (this is good for grass).

Bending: This enables bbbeeennndddiiinnnggg ooofff ttthhheee ooobbbjjjeeecccttt (((iiifff ttthhheee ooobbbjjjeeecccttt pppeeerrrmmmiiitttsss iiittt)))...

Hideable: This controls hhhooowww ttthhheee AAAIII wwwiiillllll uuussseee ttthhhiiisss ooobbbjjjeeecccttt tttooo hhhiiidddeee bbbeeehhhiiinnnddd iiittt...

PlayerHideable: If the ppplllaaayyyeeerrr iiisss wwwiiittthhhiiinnn ttthhheee bbbooouuunnndddiiinnnggg bbboooxxx ooofff ttthhheee ooobbbjjjeeecccttt,,, ttthhhiiisss dddeeettteeerrrmmmiiinnneeesss
if the player is hidden from the AI's sight when in the defined stance.

GrowOn Voxels/Brushes: If tttrrruuueee,,, ttthhheee pppaaaiiinnnttteeeddd ooobbbjjjeeeccctttsss wwwiiillllll aaatttttteeemmmpppttt tttooo aaallliiigggnnn ttthhheeemmmssseeelllvvveeesss
to Voxels/Brushes.

Pickable: Flags iiifff ttthhheee vvveeegggeeetttaaatttiiiooonnn ooobbbjjjeeecccttt iiisss pppiiiccckkkaaabbbllleee...

Brightness� This appppppllliiieeesss aaannn aaaddddddiiitttiiiooonnnaaalll bbbrrriiiggghhhtttnnneeessssss fififilllttteeerrr ooonnn ttthhheee ooobbbjjjeeecccttt...

Density: Spacing bbbeeetttwwweeeeeennn ttthhheee ooobbbjjjeeeccctttsss wwwhhheeennn pppaaaiiinnnttteeeddd (((111 === 111mmmeeettteeerrr bbbeeetttwwweeeeeennn ooobbbjjjeeeccctttsss)))...

ElevationMin/Max: This is the minimum and maximum eeellleeevvvaaatttiiiooonnn (((iiinnn mmmeeettteeerrrsss))),,, wwwhhhiiiccchhh
this object can be painted on.

SlopeMin/Max: This is the minimum and maximum ssslllooopppeee aaannngggllleee ooonnn ttthhheee ttteeerrrrrraaaiiinnn ttthhheee
objects can be painted on.

CastShadow: This determines whether ttthhheee ooobbbjjjeeecccttt cccaaassstttsss aaa ssshhhaaadddooowww ooorrr nnnooottt...































Chapter 3

��

RecvShadow: Doooeeesss ttthhheee ooobbbjjjeeecccttt rrreeeccceeeiiivvveee ssshhhaaadddooowwwsss fffrrrooommm ooottthhheeerrr ooobbbjjjeeeccctttsss??? (((GGGooooooddd tttooo tttuuurrrnnn oooffffff
for performance reasons.)

SpriteDistRatio: This is the raaatttiiiooo iiinnn wwwhhhiiiccchhh ttthhheee ooobbbjjjeeecccttt wwwiiillllll ssswwwiiitttccchhh ooovvveeerrr fffrrrooommm rrreeennndddeeerrriiinnnggg
the object to the defined sprite.

LodDistRatio: This is the ratio wwwhhheeennn ttthhheee ooobbbjjjeeecccttt wwwiiillllll ssswwwiiitttccchhh tttooo rrreeennndddeeerrriiinnnggg aaa lllooowwweeerrr LLLOOODDD...

MaxViewDistRatio: Deeepppeeennndddiiinnnggg ooonnn ttthhheee sssiiizzzeee ooofff ttthhheee bbbooouuunnndddiiinnnggg bbboooxxx,,, ttthhhiiisss dddeeettteeerrrmmmiiinnneeesss ttthhheee
maximum ratio where the player will be able to see the object at all.

Material� Any cccuuussstttooommm---dddeeefififinnneeeddd mmmaaattteeerrriiiaaalll fffooorrr ttthhheee ooobbbjjjeeecccttt...

UseSprites: If the ooobbbjjjeeecccttt ssshhhooouuulllddd rrreeennndddeeerrr ttthhheee SSSppprrriiittteeesss aaattt aaallllll...

MinSpec� Thhheee mmmiiinnniiimmmuuummm sssyyysssttteeemmm ssspppeeeccciiififificccaaatttiiiooonnn ttthhhiiisss ooobbbjjjeeecccttt ssshhhooouuulllddd rrreeennndddeeerrr ooonnn...

Layer_Frozen/Wet: This appppppllliiieeesss cccuuussstttooommm FFFrrrooozzzeeennn///WWWeeettt ssshhhaaadddeeerrrsss ooonnn tttoooppp ooofff ttthhheee ooobbbjjjeeecccttt...

Use On Terrain Layers: This auuutttooommmaaatttiiicccaaallllllyyy pppooopppuuulllaaattteeesss ttthhheee ttteeerrrrrraaaiiinnn lllaaayyyeeerrr wwwiiittthhh ttthhheee ooobbbjjjeeecccttt
with ttthhheee aaabbbooovvveee dddeeefififinnneeeddd pppaaarrraaammmeeettteeerrrsss... .

See also
The Terrain Texture setup recipe

The Placing objects in the world recipe

Breaking up tiling with Decals
Up to this point, you might have noticed that the terrain texturing can look a bit poor with the
amount of tiling that may be seen. In this recipe, we will explore how you can break up some
of the terrain tiling with Decals.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Complete the Terrain Texture setup recipe

How to do it...
1. From the RollupBar, open the Objects tab.

2. Click the Misc button.

3. Select Decal.

4. Align the Decal to your terrain and place it down in an area with a lot of tiling.





























Basic Level Layout

��

5. From the Decal properties, click MTL (or bring up the material editor).

6. Find Materials | decals | ground_crack_a.

7. Apply the material to the Decal.

How it works...
Decals are simple texture planes that can be projected against both terrain and objects
(such as the Road tool).

There's more...
Here is some additional information about the Decals and what parameters can be set.

Decal parameters
ProjectionType:

0 = Planar

1 = Projects on static objects (Brushes)

2 = Projects on Terrain

3 = Projects ooonnn bbbooottthhh ssstttaaatttiiiccc ooobbbjjjeeeccctttsss aaannnddd TTTeeerrrrrraaaiiinnn











Chapter 3

��

Deferred: Ussseeesss ssscccrrreeeeeennn ssspppaaaccceee cccaaalllcccuuulllaaatttiiiooonnn iiinnnsssttteeeaaaddd (((bbbeeetttttteeerrr ooonnn pppeeerrrfffooorrrmmmaaannnccceee,,, bbbuuuttt mmmaaayyy nnnooottt
look as good)

ViewDistRatio: Diiissstttaaannnccceee RRRaaatttiiiooo iiinnn wwwhhhiiiccchhh ttthhheee DDDeeecccaaalll iiisss ssseeeeeennn bbbaaassseeeddd ooonnn ttthhheee sssiiizzzeee ooofff
the decal

SortPriority: Thhheee ppprrriiiooorrriiitttyyy ooofff wwwhhhiiiccchhh ppprrrooojjjeeecccttteeeddd ttteeexxxtttuuurrreee ssshhhooouuulllddd bbbeee dddiiisssppplllaaayyyeeeddd ooonnn ttthhheee tttoooppp
(roads match this priority range)

Decals can have their unique position, rotation, and scale
Decals can have their own position, rotation, and scale, just like brushes.

See also
The Road tool recipe

Making caves with Voxels
In this recipe, we will explore the basic uses of the Voxel object and how you can create caves
in the cliff sides of your terrain.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Adjust a section of your Heightmap, so that you have a mountain side to make a
cave from

Complete Terrain Texture Setup and paint the mountain side

How to do it...
1. From the RollupBar, open the Objects tab.

2. Click the Misc button.

3. Select VoxelObject.

















Basic Level Layout

�0

4. Place the VoxelObject a little towards the side of the mountain, as seen in the
following screenshot:

DO NOT rotate or scale the Voxel object.

5. Select the Voxel object and click Copy Terrain into Voxel.

This has now copied the shape of your terrain into the Voxel. You may not see the differences
yet, but we will now cut a hole into the mountain using the Voxel Painter to create a cave:

1. Go to the Terrain tab in the RollupBar.
2. Select Voxel Painter.
3. Select Soft Subtract.
4. Set your Brush Radius to 15.
5. Click once around the centre of the Voxel surface.

Chapter 3

�1

Again, you may not see anything different, but that is because there are still two layers
rendering (Terrain and Voxel). We will now cut holes into the Terrain, so we can see the
Voxel cave that is forming:

1. Go to the Terrain tab in the RollupBar.

2. Select Holes.

3. Select Make Hole.

4. Increase your Brush Size to a reasonable size (1/4).

5. Make a hole around the same area as your Voxel (be sure not to cut holes outside of
the Voxel object).

If the Terrain tiles are too large for the holes that are created,
increase the tile resolution from the Layer Painter.

6. Go back to the Voxel Painter and continue subtracting the Voxel.

A cave like the following should begin to appear:

How it works...
The Voxel tool is a very powerful tool that allows the designers to create caves or even some
extrusions from the terrain surface without requiring an artist to create new assets.

Basic Level Layout

�2

There's more...
Enhance the Voxel using the following options.

Soft Create
Soft Create extrudes the triangles of the Voxel instead of bevelling them inside.

Material
This allows the designer to paint the materials from the Terrain Layer Painter into the Voxel.

Copy Terrain
Painting with this brush restores the Voxel to the Terrain's original position.

Creating Prefabs to store in external
libraries

In this recipe, we will show you how to create a Prefab and look at some of the global uses
for them.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Create ttthhheee hhhooouuussseee ooobbbjjjeeecccttt aaagggaaaiiinnn fffrrrooommm ttthhheee Editing and Merging Solids recipe

Then place down the Objects/natural/trees/hill_tree/hill_tree_large_bright_
green.cgf as a brush near ttthhheee hhhooouuussseee

How to do it...
The house and the tree are just two objects that will be used to demonstrate creating
a Prefab.

Before we begin, we must create a new library to store these objects:

1. Open the DataBase View (View | Open View Pane | DataBase View).

2. Open the Prefabs Library tab.

3. Create a new Prefab library named My_Prefabs.

4. Select both the House and the Tree.

5. In the main toolbar, click on Prefabs | Make from Selection.









Chapter 3

�3

6. Group = Houses.

7. Name = House_with_tree.

8. Click on the Save Modified Libraries in the DataBase View.

If you do not perform step 8 and close the level, you risk
losing your Prefab!!

This has now created a new Prefab for you:

How it works...
Prefabs are much like groups of any object/entity within the engine. The difference is
that they are self-contained groups that can be propagated to all other maps if the Prefab
itself changes.

The major benefit of Prefabs is that any logic, sound, art, AI navigation, or additional work may
be done on this grouped asset without the level designer needing to place a whole new asset
every time. Each time the Prefab gets updated, the level designer will see the change once
the level is re-opened with the new Prefab library.

Modified Prefabs will NOT be seen in the game mode unless the level has
been exported with the latest Prefab in the Editor.

Basic Level Layout

�4

There's more...
Here are some extra functions that can be used with Prefabs.

Extract Object and Extract All
After the Prefab is selected in the level, you can then select an object from the Prefab list and
choose to extract that object from the Prefab. This allows the designers to take objects out of
the Prefabs – if required – and modify them on their map individually.

Extract All will allow the designers to unpack everything from the Prefab completely. This is
normally done to allow designers access to link logic to objects within the Prefab (Prefabs do
not allow any links to pass outside of their packed content).

Open/Close
Without extracting the objects, it's still possible to change any of the properties of an object
within that group. Simply ooopppeeennn ttthhheee gggrrrooouuuppp aaannnddd ssseeellleeecccttt ttthhheee ooobbbjjjeeecccttt yyyooouuu wwwiiissshhh tttooo mmmaaannniiipppuuulllaaattteee iiinnnsssiiidddeee...

To close the Prefab, select the group and click on the Close button.

Pick and Attach/Remove Object and Update Prefab
You may also choose to pick and attach other objects/entities and put them into the already
existing Prefab. Simply align the object/entity to the relative location you wish to have it within
the Prefab. Then click Pick and Attach and select that object.

Alternatively, you can select an object from the Prefab's list and click Remove Object. This will
remove the object from the Prefab and leave it where it was located on the map.

Both of these methods affect what is stored in the Prefab, however the Prefab itself is not
automatically updated. After you've chosen to modify the Prefab in any way, (Pick and Attach/
Remove Object�Modified an Object inside the Prefab) you must then click on Update Prefab.
This will make sure the Prefab is re-written into the DataBase View. To make sure the Prefab
library is saved, go to the DataBase View and save the Prefab Library.

See also
The Grouping the objects recipe

4
Environment CCCrrreeeaaatttiiiooonnn

In this chapter, we will cover:

Creating your first time of day with the basic parameters

Adjusting the terrain lighting

Using the real-time Global Illumination

Adjusting the HDR lighting and the effects for flares

Creating a global volumetric fog

Creating a night scene with the time of day parameters

Color grading your level

Creating a realistic ocean

Improving your sky with the clouds

Making it rain in your level

Introduction
In this chapter, we will cover some of the environmental improvements and additions you can
make within the CryENGINE 3 Sandbox with levels.

A good deal of the tools covered here will be atmospheric in nature; however, when used
in combination with game play elements, this can make for quite a unique and immersive
gaming experience for your player.





















Environment Creation

��

Creating your first time of day using the
basic parameters

In this recipe, we will go through the creation of a basic time of day for your level.

A common sunny daylight environment can be easily created using a bright yellowish sun
color, a bright blue color sky to be used for ambient lighting, and finally, an angled sun
direction to get some interesting shadows.

Getting ready
For this tutorial, you should have the forest level forest.cry opened. This level is installed
automatically as a sample when you install the SDK.

Usually, when creating your own time of day, you should use photo reference or fairly specific
concept art. Experimenting will allow you to find an interesting mix of values, but in the end
you may want to achieve a certain look. So having a goal before beginning to adjust the time
of day is recommended.

How to do it...
1. Open the Time Of Day dialog from View | Open View Pane | Time Of Day.

Chapter 4

��

Notice, when you highlight any of the basic parameters in the Time Of Day dialog
there are already key frames created on the timeline. This timeline is represented
by the 24 hour slider at the top of the interface. Since the best way to learn to
manipulate the time of day editor is to create your own, let's go ahead and reset
all the values.

2. To do this, click Reset Values in the Time of Day Tasks window.

This will effectively remove all the key frames outside of the default values at 0000
and 2400.

3. Before we adjust the parameters to suit our needs, set Force sky update to True and
ensure the record button is highlighted.

Next, let's set the current time in the level so that we can see the sun.

Environment Creation

��

4. To do this, click-and-drag the arrow on the slider to late afternoon. If you have
difficulty getting the current time accurate, you can type in the current time.

5. Set the current time to 1600.

Having the sun intersect some geometry will allow sunrays to be
shown more clearly.

The first setting we will adjust will be the color of the sun. The sun in CryENGINE 3
is an advanced dynamic light. Adjusting the sun color in simple terms will adjust the
diffuse color for this light.

6. To adjust the overall color, first click the color sampler box and click-and-drag thecolor sssaaammmpppllleeerrr bbboooxxx aaannnddd cccllliiiccckkk---aaannnddd---dddrrraaaggg ttthhheee
black target to your preferred value. In our case, let's take a realistic approach to
lighting this level and set the sun color to a warm yellow tone of RRRGGGBBB 235, 230, 190.

Chapter 4

��

7. After clicking OK, yooouuu wwwiiillllll ssseeeeee ttthhhaaattt nnneeewww kkkeeeyyy fffrrraaammmeeesss hhhaaavvveee nnnooowww bbbeeeeeennn cccrrreeeaaattteeeddd ooonnn
the timeline.

You can see the interpolation of the values from 0000 to 2400.
This will be used in case you have an animated time of day.

8. The next parameter we adjust will be the multiplier for the sun color we previously
set. Set the Sun color multiplier to a level of 8.

Next, we will set the sky color.

Though the setting is caaalllllleeeddd ssskkkyyy cccooolllooorrr,,, iiittt iiisss mmmooorrreee aaaccccccuuurrraaattteeelllyyy ttthhheee
ambient lighting color for the entire level.

To observe the effects of changing this color, simply look anywhere there is no sun affection
on objects from the sun lighting.

Environment Creation

�0

Let's first set the color to the currently visible color of the sky�

1. To do this, click the color sampler box for the sky color parameter and click the
sample tool.

2. Next, click somewhere on the sky in the perspective viewport, this will sample
its color.

3. For this tutorial, set your sky color to RGB 150, 200, 210.

The sky color multiplier works as the ambient color multiplier. Since we are going for a more
realistic looking time of day, seeettt ttthhhiiisss dddooowwwnnn tttooo 0.8.

Next is the Fog subsection of time of day. In our case, we only need to adjust the global
density value.

When using a dynamic sky, some haze is already calculated by the sky model.
The fog specified by the fog color gets added to that haze. In many cases, the
haze may be enough to get properly colored fog for a given time.

As we do not require a high amount of fog for a pleasant realistic scene, let's set the global
density to a value of 0.02. TTThhheee nnneeexxxttt ssseeettttttiiinnnggg wwweee aaadddjjjuuusssttt wwwiiillllll bbbeee ttthhheee Sky Light parameters... WWWeee
can use a handy feature of the Time Of Day dialog to copy and paste the RGB values from
the sky color.

Chapter 4

�1

Use the sun color for a source color to warm the map or use the sky color to cool the map:

1. Highlight the values in the sky color then right-click and select copy.

2. Next, highlight the sun intensity values then right-click again and select paste.

3. You can also type in the RGB value used in the sky color or sun color. In our case,
we will uuussseee RRRGGGBBB 150, 200, 210.

4. Adjust the Sun intensity multiplier to aaa bbbiiittt hhhiiiggghhheeerrr ttthhhaaannn nnnooorrrmmmaaalll tttooo gggeeettt aaa vvvooollluuummmeeetttrrriiiccc
look to the fog, use a multiplier of 50.

For the time being, we will not be setting any parameters for the night sky and night
sky multiplier as we will discuss that later. The final setting we will adjust for our basic
time of day will be the Sun rays Effect.

5. This value controls the visibility of sun rays. Higher values will cause brighter rays to
appear around the sun, lower values are a bit less stylized but more akin to a realistic
look. Set this to 2.0.

6. The last three parameters shown in the Time Of Day dialog are the color filter
settings. However, for this process, it is much better to use color grading, which will
be discussed later in this book.

7. Leave the color filter settings at default and you should have created a setting that
looks like the following screenshot:

Environment Creation

�2

How it works...
The sun in the CryENGINE is approximated by a colored directional light without distance
attenuation. This is important to understand as its properties are similar to that of a regular
light and properties such as color and specular level can be adjusted. However, there is
an important distinction to the sun and other lights in the CryENGINE, as the sun uses a
technology called cascaded shadow maps.

Sun shadows are achieved in the renderer by splitting up the view frustum into multiple
parts that the CryENGINE can handle separately, also known as Cascaded Shadow Maps.
Additionally, Variance Shadow Maps are also used for the lower resolution shadows from
the terrain.

Sky light parameters aaarrreee sssooollleeelllyyy uuussseeeddd tttooo cccooommmpppuuuttteee ttthhheee aaatttmmmooosssppphhheeerrriiiccc aaappppppeeeaaarrraaannnccceee ooofff aaa dddyyynnnaaammmiiiccc
sky. They do not directly affect the rendering of objects in the world (for example, lighting
colors and intensities). However, they are used by the engine to compute an approximate
fog color to automatically fog the entire scene in the appropriate colors.

For static skyboxes, only the fog color in the fog parameter's
group is used.

The Time Of Day dialog has a huge variety of settings to simulate realistic and surrealistic
lighting effects. Having completed setting up the basic parameters will make it substantially
easier to adjust the advanced effects that the time of day allows you to adjust to achieve a
photorealistic-looking outdoor lighting.

There's more...
You may want to know what the reason for forcing sky update is, or what the record and play
functions do.

Forcing sky update to true
Setting the Force sky update to True in the Time Of Day dialog forces a complete update of
the sky light calculations in each frame shown in the perspective view. Should this not be set
to true, the sky light calculations will be distributed over several frames and the time it will
take to update will be highly dependent on the platform that is running the engine. You should
be aware of this when editing some of the parameters within the time of day as some will take
extra time to update.

Chapter 4

�3

Record icon
The rrreeecccooorrrd iiicccooonnn iiisss hhhiiiggghhhllliiiggghhhttteeeddd bbbyyy dddeeefffaaauuulllttt... TTThhheee rrreeecccooorrrddd bbbuuuttttttooonnn aaallllllooowwwsss ttthhheee ccchhhaaannngggeeesss mmmaaadddeee iiinnn ttthhheee
parameter's panel to be stored into the levels of time of day. This can be used to preview
single parameter changes at a time without the worry of writing its changes to the time of day.

Play icon
The play icon starts or resumes the playback of the time of day sequence in the Editor; if the
current time is not within the specified time range (between the start and end time), frame
playback begins at the specified start time.

See also
The Adjusting the terrain lighting recipe

The Using the real-time global illumination recipe

The Creating a night scene with the Time of Day Editor recipe

Adjusting the terrain lighting
Having learned how to set up a basic time of day parameter, the next step will be to adjust
the level's lighting direction and dynamic characteristics using the Terrain Lighting dialog.
This tool allows you to set the direction from which the sun rises as well as the distance your
location is from the North Pole to the South Pole.

Getting ready
For this tutorial, you should have the forest level forest.cry opened. This level was installed
as a sample level upon the installation of the CryENGINE SDK.







Environment Creation

�4

How to do it...
We will now explore the terrain lighting dialog:

1. Open the terrain Lighting Tool by clicking the Terrain section of the main toolbar and
then lighting.

2. Under the Sun Settings section there are two sliders. Adjust the first slider called Sun
direction (map orientation) to the centre most point on the slider. This aligns the sun
so that it rises in the east and sets in the west.

North is assumed to be y+ in the cryENGINE.

3. Next, adjust the second slider named NorthPole..Equator..SouthPole to its centre
most position.

This will change the tilt of the sun; when set at the centre, setting the current time to
1200 will cause the sun to be directly above you. Adding a tilt in either direction will
infer that your level's location in reality is closer to either pole of the planet.

4. Adjust the tilt slightly towards the North Pole as this particular environment looks to
be in the northern hemisphere.

5. Click OK to save your modifications.

When using the time of day feature, it is recommended not to
have the sun perfectly at the highest position.

Chapter 4

�5

How it works...
The terrain lighting works in unison with the time of day settings to give the level its outdoor
lighting characteristics.

It is good to have some rotation on the sun so that the shadows are not aligned with the world
direction and thus, the objects that may be aligned. This is all to make man made buildings
and other level objects look better as they are often world aligned and built straight up.

There's more...
You may want to know more about the transitioning in shading from the sun to the moon or
how to adjust the terrain ambient occlusion.

Terrain ambient occlusion
Adjust the quality of the terrain occlusion by adjusting the slider at the bottom of the Terrain
Occlusion dialog box. Increasing the Sky terrain occlusion quality (low..high) will adjust the
amount of light occlusion and render a real-time preview. Terrain occlusion is often used to
create the effect of indirect lighting.

Transition shading from the sun to the moon
A fundamental principal of the time of day is that there can be either sun or moon lighting,
but not both. You need to adjust the Moon/Sun Shadow Transition (advanced) parameters
to adjust the time when the sun should be active and when the moon lighting should become
active and vice versa.

Dawn Time: This sets the time when the sun should rise

Dawn Duration: This changes the duration of the moon to sun lighting
transition phase

Dusk Time: This sets the time when the sun should set

Dusk Duration: This changes the duration of the sun to moon lighting
transition phase

SSAO (screen-space-ambient occlusion)
Ambient occlusion is a well-known technique in the movie industry to approximate the effect
of indirect lighting. Usually, it needs to be computed during the game production time and it
only supports static scenes.









Environment Creation

��

CryENGINE 3 uses a technique that is very suitable for real-time and can support dynamic
scenes. Because it does not have to be pre-computed, there is no production time lost in
creating this effect.

With SSAO (screen-space-ambient occlusion), yyyooouuu cccaaannn eeexxxpppooossseee ttthhheee gggeeeooommmeeetttrrriiiccc dddeeetttaaaiiilll ooofff sssccceeennneeesss
and ensure that its complexity is retained. This is a screenspace effect, so performance is not
affected by scene complexity.

You can adjust the SSAO amount multiplier in the Time Of Day dialog.

See also
The Generating a procedural terrain recipe in Chapter 2, Sandbox Basics
The Editing HDR lighting and effects for Flares recipe

Using the real-time Global Illumination
Global Illumination (GI) is aaannn iiinnnttteeegggrrraaalll pppaaarrrttt ooofff mmmooosssttt ooofff ttthhheee cccuuurrrrrreeennnttt aaannnddd nnneeexxxttt gggeeennneeerrraaatttiiiooonnn gggaaammmeeesss
and will undoubtedly be a major point of interest.

GI is at its core a lighting technique that is meant to enrich the picture and add to the overall
image quality, and thus, its perception by the user.

In this section, we will learn how to use the Global Illumination as it suits the purposes of
immersive and dynamic gaming quite well due to its real-time nature.





Chapter 4

��

Getting ready
You should have the forest level Forest.cry open in the Sandbox Editor.

Under the Options panel in the RollupBar, you must hhhaaavvveee ssseeettt Global illumination to
true/enabled.

How to do it...
1. Open the Time Of Day dialog.
2. Now that we are moving into the advanced environmental settings, click the Toggle

Advanced properties. TTThhhiiisss wwwiiillllll nnnooowww eeexxxpppooossseee aaallllll ttthhheee ppprrrooopppeeerrrtttiiieeesss aaavvvaaaiiilllaaabbbllleee tttooo ttthhheee Time Of
Day dialog.
The only attribute we are concerned with, in this example, is the Global illumination
multiplier.

3. To ooobbbssseeerrrvvveee ttthhheee aaaffffffeeecccttteeeddd aaarrreeeaaasss ooofff GGGlllooobbbaaalll IIIlllllluuummmiiinnnaaatttiiiooonnn,,, ssseeettt ttthhheee mmmuuullltttiiipppllliiieeerrr tttooo iiitttsss
maximum of 100.

Environment Creation

��

4. To finalize the settings for our level, set the Global illumination multiplier back down
to a value of 2.

How it works...
The majority of current games and game engines use various approaches to some kind of
previously baked or pre-computed global illumination. UUUsssiiinnnggg ppprrreee---cccooommmpppuuuttteeeddd ggglllooobbbaaalll iiilllllluuummmiiinnnaaatttiiiooonnn
has many restrictions aaannnddd iiimmmpppooossseeesss sssooommmeee iiinnnhhheeerrreeennnttt llliiimmmiiitttaaatttiiiooonnnsss... OOOnnneee iiimmmpppooorrrtttaaannnttt llliiimmmiiitttaaatttiiiooonnn iiisss ttthhhaaattt,,,
in most outdoor situations, you would be forced to maintain static lighting conditions and/or
static objects; otherwise the pre-computed texture would not fit the scene.

For all intents and purposes, the CryENGINE 3 can be mostly considered a baking-free
game engine. A major unique point of the CryENGINE 3 is that it provides physically-based
phenomenon such as dynamic time of day and object breakability to enrich gaming experience
and also to simplify game production process, which means that using many of the
pre-computational approaches would not compliment the engine.

There's more...
You will definitely want to experiment with some of the more advanced console variables that
adjust the application of GI to your level.

Advanced GI Cvars
If you plan to enable GI for your levels, it is important that you know the advanced GI settings
available from the console and their uses:

e_GIAmount = (X): This wwwiiillllll mmmuuullltttiiippplllyyy wwwiiittthhh ttthhheee Global illumination multiplier set in the
Time Of Day dialog. The default is 1.

e_GIMaxDistance= (X): Thiiisss wwwiiillllll eeexxxttteeennnddd ttthhheee rrraaannngggeee ooofff ttthhheee GGGlllooobbbaaalll iiilllllluuummmiiinnnaaatttiiiooonnn eeeffffffeeecccttt
from the camera. The default is 50.

Closer distance is equal to higher quality.

e_GIOffset = (X): The GGGIII iiisss aaannn oooffffffssseeettt fffooorrrwwwaaarrrddd ooofff ttthhheee cccaaammmeeerrraaa tttooo aaa ccceeerrrtttaaaiiinnn aaammmooouuunnnttt... TTThhhiiisss
can be adjusted to 0 with a small impact to performance.

Continue to the next recipe to edit the HDR lighting for your level.

See also
The Editing HDR lighting and the effects for Flares recipe









Chapter 4

��

Editing HDR lighting and the effects for
flares

HDR Lighting is an important aspect of level lighting. In this recipe, we will adjust the
environment variables pertaining to some of the advanced HDR effects available within
the engine.

In this recipe, we will explore the Environment settings available in the RollupBar.

Getting ready
For this recipe, Forest.cry should be opened.

How to do it...
As we are currently using an HDR compatible sky in the forest level, we can adjust the HDR in
the Time Of Day dialog.

1. Open the time of day and the very top parameter is the HDR Dynamic Power Factor.
Mooosssttt ooofff ttthhheee tttiiimmmeeesss,,, tttooo eeennnhhhaaannnccceee ttthhheee HHHDDDRRR llliiiggghhhtttiiinnnggg ddduuurrriiinnnggg dddaaayyytttiiimmmeee sssccceeennneeesss,,, ttthhhiiisss ssshhhooouuulllddd
be increased.

2. Set this to a conservative value of 2 to retain realistic lighting conditions.

Environment Creation

�0

The HDR lighting dynamic power factor can be increased at night to
enhance flare effects.

3. Having adjusted the multiplier, let's now move on to the Environment parameters
available to us in the RollupBar. Open the following from the RollupBar:

Chapter 4

�1

4. At the bottom-most of this rollout is the HDRSetup section. Theee fififirrrsssttt ttthhhaaattt wwweee wwwiiillllll
adjust is the HDR Cooonnntttrrraaasssttt. In general, increasing the HDR contrast can heighten
the users' perception of intensity. Decreasing it can also be useful in extreme lighting
situations. Set it at 1.1 for this example.

5. We will not adjust the color for the HDR Blue shift or the BloomColor as the default
values are quite sufficient for our needs.

6. Adjust the bloom multiplier (BloomMul) to 5 and notice the effects. Often heavy
bloom is used to induce a dreamy type effect to the player. It increases the visibility
of flares.

7. As the flare color is heavily dependent on the view of the player, it is recommended to
use a setting that has a fairly bright but neutral color. In our case, let's select a color
of RGB 24, 220, 185.

8. The final property to adjust is the flares multiplier. This controls the overall intensity of
the flares. As this is a mid-day scene with a decent amount of HDR lighting, we should
keep this quite low. Adjust the flares multiplier (FlaresMul) to a more realistic value
of 0.07.

You have now adjusted the HDR settings in the time of day and the rollout bar!

How it works...
These settings are saved within the .cry file and thus to the game once it is exported to
the engine.

Using these settings you can give the player a dynamically lit, realistic or even stylized
environment by pushing some values, such as the bloom multiplier, to extreme values.

There's more...
You may want to know how to manually create flares or coronas using lights or what texture
effects produce pronounced HDR bloom.

Lights with flare effects
When a light entity is placed in the level, it is able to produce a flare effect. However, it does
require a material with the correct Light.Flare shader.

Environment Creation

�2

Glow texture effect produces bloom and flares
While adjusting the setting for HDR flares be mindful of the asset within the level. Some
assets may use a glow effect or texture that can produce strong flares and streaks.

This image shows the extreme values in the HDR settings but communicates well the
reason the developer must check different assets within their levels as the lighting
settings are adjusted.

See also
The Creating a night scene with time of day parameters recipe

The Creating a global volumetric fog recipe

Creating a global volumetric fog
In this recipe, you will interact with the HDR effects and learn to manipulate the global fog and
other fog effects such as volumetric fog.

Getting ready
You should have Forest.cry open in the Editor and have completed the Creating your first
time of day using the basic parameters recipe earlier in this chapter.





Chapter 4

�3

How to do it...
As we will soon be adjusting the fog color, to be able to visualize it easier being multiplied on
top of the haze created by the HDR sky, we must set its multiplier:

1. Open the Time Of Day dialog and ensure that the advanced time of day settings
are displayed.

2. Set the FogColorMultiplier to 10, so that we can easily see our color changing.
3. Next, select a color for the fog.

A good technique is to copy the color of the sun to warm the map or
the color of the sky to cool it.

4. In the following final screenshot, I have used the sky color of RGBhave uuussseeeddd ttthhheee ssskkkyyy cccooolllooorrr ooofff RRRGGGBBB 150, 200, 210 for
the fog.

5. Next, let's adjust the atmosphere height. This parameter defines the atmosphere
height aaabbbooovvveee ttthhheee ssseeeaaa llleeevvveeelll... SSSooo,,, iiinnn rrreeeaaallliiitttyyy ttthhheee hhhiiiggghhheeerrr ttthhheee aaatttmmmooosssppphhheeerrreee iiisss,,, ttthhheee llleeessssss vvviiisssiiibbbllleee
the effect of fog layers will be.

6. Let's set our aaatttmmmooosssppphhheeerrreee tttooo 8000. Since we have raised the atmosphere, the fog in
the distance will be too bright and we will need to adjust for this.

7. Set the FogColorMultiplier down to a more comfortable value of 5.

If you still find that the density of the fog is too thick, then adjust the
global density.

Environment Creation

�4

You can now see that setting good volumetric fog can increase the believability of a level and
especially highlight the silhouettes of distant objects.

How it works...
Global volumetric fog in the CryENGINE allows you to model almost all aspects of an
atmospheric Aerial Perspective. It simulates particles/aerosols distributed uniformly along the
ground plane and falling off exponentially from a height (based on height above the sea level).
The fog integral between the viewer and each pixel in the scene gets properly solved taking
the two mentioned distributions into account. Additionally, it accounts for sunlight scattered
into the view ray to produce halos around the sun in foggy environments.

There's more...
You would have noticed other settings under the Fog parameters in the Time Of Day dialog
such as Density offset. You might also want to know how to enable and disable fog rendering
for ease of editing.

Density offset
The Density offset parameter shifts the fog density per pixel, by the given amount. As a result,
objects that are close to the viewer appear less foggy.

Adjusting this effect should be used sparingly as there is a realistic trait to
this visual effect.

Enabling or disabling fog in the Render Settings
You can easily disable the rendering of fog in the Editor without adjusting the time of day
settings. Do this by navigating to the Display tab in the RollupBar and unchecking Fog.

See also
Go back to the Terrain Lighting recipe earlier in this chapter to see the effects of sun
lighting on the fog settings

Continue to the next recipe to create a custom skybox for your level





Chapter 4

�5

Creating a night scene with time of day
parameters

In this recipe, we will be creating a night scene utilizing the advanced parameters of time
of day.

Getting ready
You should have Forest.cry open in the Editor.

How to do it...
Let's create a night time atmosphere for our level:

1. Open the time of day editor.

You can back up your time of day as a .tod file with the
export time of day tool.

As we will only be worrying about the important values that will pertain to creating a
night scene, let's reset the current values.

2. Click reset values.

3. Set the tttiiimmmeee ooofff dddaaayyy tttooo 21:00, which wwweee cccaaannn sssaaafffeeelllyyy cccaaallllll nnniiiggghhhttt...

You will notice that the sun goes below the horizon but we can now adjust the
position of the moon texture, which – for all intents and purposes – will be used
as the "sun" in our night scene.

4. The first value we should change is the moon color in the Night Sky Multiplier
section of the time of day dialog.

5. Set the moon cccooolllooorrr tttooo 2. Now ttthhhaaattt ttthhheee mmmoooooonnn iiisss vvviiisssiiibbbllleee wwweee mmmuuusssttt aaadddjjjuuusssttt ttthhheee mmmoooooonnn
texture's position and size.

6. Open the Environment tab in ttthhheee RollupBar and locate the moon environment
properties.

7. Adjust the longitude and latitude to change the position of the moon in the sky to
wherever you want it, or you may copy the parameters in the image.

Environment Creation

��

8. Now that we have our basic setup, we need to aaadddjjjuuusssttt ttthhheee ooovvveeerrraaallllll cccooolllooorrriiinnnggg aaannnddd llliiiggghhhtttiiinnnggg
of the scene.

Feel free to add variations to these values as not all the available
options are used here.

9. Set the sky color multiplier to 0.4, which will dim ttthhheee eeennntttiiirrreee mmmaaapppsss aaammmbbbiiieeennnttt llliiiggghhhtttiiinnnggg...

10. Next set the Zenith color in the Night Sky parameter to a suitable night sky color of
40,54,51 RGB.

11. Now we can add some stars to the scene by increasing the Star intensity in the Night
Sky parameter to its maximum of 3.

If you have Depth of Field Enabled it can be difficult to see the
stars at times.

12. As we want no direct lighting, let's set the sun color mmmuuullltttiiipppllliiieeerrr tttooo 0.

The final touch we will make is to add some fog to the scene to highlight the
silhouettes of distance objects.

13. Set the fog color to a fairly dark cccooolllooorrr ooofff 61,80,84.

14. Now, adjust the Fog Color multiplier to 1.

15. Finally, to retain the silhouettes of objects set the global density to 0.2.

If you find the fog too bright on your particular monitor or
gamma setting, you can adjust the fog color multiplier further
down to 0.5.

You now have a realistic night time of day!

There's more...
There are many other properties available to you when adjusting for a night scene. Some of
these are explained as follows.

SSAO contrast and amount
To enhance your night scene you will likely want to increase the SSAO (screen-space-ambient
occlusion) amount and its corresponding contrast.

Chapter 4

��

HDRSetup parameters at night
It is likely that you will need to adjust the HDRSetup paramters to less extreme values than
during the daytime in your level. HDR effects such as flares and coronas will be much more
obvious and visible to your player at night.

Moon and corona color and scale
If you wish to have a more surreal scene, you can adjust the moon color to different extremes
of colors; it should be noted that this color is simply multiplied onto the color of the moon
texture. The corona scale and color settings will allow you to highlight your moon and its
surrounding sky area with more or less lighting.

See also
Having now created a whole atmosphere, go to Chapter 3, Basic Level Layout to start laying
out your night time level.

Continue to the next recipe to color grade your entire night scene to emphasize certain colors
or styles.

Color grading your level
Color correction is a post processing effect that takes a frame rendered by the engine and
changes its output of colors in various ways.

This effect is typically used in film to enhance scenes with effects such as Hue and Saturation,
Contrast and Brightness, Luminance and Color Curves, and so on.

Getting ready
Take a reference image that hasn't been color corrected yet and shows a wide range of colors
from an open level. Avoid using high resolution image captures though, as they won't improve
color correction quality, but rather only increase the processing time when saved later. In this
example, I captured a 1280x720 TGA image.

Copy/paste THE COLOR CORRECTION LOOKUP REFERENCE CHART into this reference
image using Photoshop. It is important to use the color chart supplied by Crytek, as the
resource compiler will need this file later on, to detect and extract the chart.

Flatten all layers, and save the file before beginning this tutorial.

Environment Creation

��

How to do it...
Let's learn how to color grade our levels.

Begin by making the desired color adjustments in Photoshop. In this example, apply a bleach
bypass color gradient to my scene:

1. When color correcting the reference image, ensure that the changes are affecting the
added THE COLOR CORRECTION LOOKUP REFERENCE CHART.

2. Once the desired changes have been made, you may now save the new image as a
CryTIFF file in your root directory under Textures\colorcharts\. IIIttt iiisss eeesssssseeennntttiiiaaalll
that you follow the naming convention: filename + _cch.tif.

3. Having now created our modified COLOR CORRECTION LOOKUP CHART, let's
integrate this into our scene.

4. First, set the cccooonnnsssooollleee vvvaaarrriiiaaabbbllleee r_ColorGGGrrraaadddiiinnnggg to 1, which enables it.

5. NNNeeexxxttt, set the cvar r_ColorGradingCharts to 2.

6. Setting r_colorgradingcharts to 2 works sssiiimmmiiilllaaarrr tttooo ssseeettttttiiinnnggg iiittt tttooo 1, but in addition it
displays debug information in the upper-left corner of the perspective view with the
color chart lookup table, blending information and name of any static color charts
that are loaded.

7. Finally, in order to load and use a ssstttaaatttiiiccc cccooolllooorrr ccchhhaaarrrttt ttthhhaaattt ooovvveeerrrwwwrrriiittteeesss ttthhheee
dynamic blending results mentioned earlier, use the console command
r_ColorGradingChartImage and specify the path to the color corrected
reference image.

For Example, r_ColorGradingChartImage textures/colorcharts/
filename + _cch.dds.

How it works...
Color correction in CryENGINE 3 takes a reference image that gets color corrected by a
beautification artist or a designer. This image includes a default color lookup chart so all
transformation steps applied to the image can later be reconstructed into the scene through
the color correction post effect.

When activated through the console with the parameter r_ColorGradingChartImage, iiittt llloooaaadddsss
the defined color chart image.

There's more...
You may want to know more about why the _CCH naming convention must be used or how to
capture frames directly from the engine for color correcting.

Chapter 4

��

_CCH naming convention
If you follow this naming convention, the resource compiler should automatically pick
ColorChart as the preset to be used. Make sure that the image is not tiled in the Resource
Compiler. If you wish, you may generate the output manually in order to create a file with a
.dds extension.

Capturing TGA images as reference images
As some artists may prefer to use uncompressed TGA images to adjust the settings, they can
be output from the editor using the capture frames command:

set capture_file_format to tga

capture_frames_once to 1

capture_frames to 1

This will save a tga screenshot of the perspective viewport to the CaptureOutput folder by
default. This can be adjusted using the capture_folder console command.

Debugging visual glitches
If you encounter visual glitches on the PC, please ensure that you haven't overwritten 3D
settings for either the editor or the game launcher in the control panel of your video driver.
This can be a major source of visual artifacts.

See also
Before color grading, you should be happy with the overall time of day settings. Go to
the Creating your first time of day recipe earlier in this chapter, if you want to make
further adjustments.

Creating a photo realistic ocean
In this tutorial, we will create our own custom ocean material and apply it to a level. As the
ocean is commonly used in games as an interactive game play element, we will also cover
the underwater fog settings to make underwater game play enjoyable for our player.

Getting ready
The Live_Create_Small level should be open in the Editor. Your Time Of Day dialog
should be open in the editor and set to a time of 0630. YYYooouuu ssshhhooouuulllddd aaalllsssooo ssseeettt iiittt tttooo aaa vvveeerrryyy hhhiiiggghhh
specification to observe the advanced tessellation features.







Environment Creation

100

How to do it...
Let's create a new photo realistic ocean for the level:

1. First, to see the currently applied ocean material, open the Environment tab in
the RollupBar.

2. Under the Ocean parameter you will see four parameters.
3. First, let's apply our own mmmaaattteeerrriiiaaalll...
4. Click on the browse button in the Ocean mmmaaattteeerrriiiaaalll pppaaarrraaammmeeettteeerrr... TTThhhiiisss wwwiiillllll ooopppeeennn ttthhheee

currently applied material.
5. Create a new material and name it my_ocean.mtl and save it under your root

directory /materials/ocean/.
6. Next, click apply in the Ocean material parameter in the RollupBar. You will notice

that there is no water yet. This is because the Ocean requires a specialized shader
to render.

7. To set the shader you must edit your newly created material my_ocean.mtl, set the
shader parameter in this material to water.

Now that we have some basic water, we should apply a bump map to create the small ripples
and waves on the water's surface. This will allow some refraction to occur, enhancing the
overall effect.

1. For now use the texture lllooocccaaattteeeddd iiinnn textures/defaults/oceanwaves_ddn.dds.

2. To finalize the material ensure that the Sunshine tickbox is active in the Shader
Generation Parameters.

Experiment with different shader settings for more stylized
and extreme types of water.

3. Now, let's adjust the Ocean settings available to us in ttthhheee Time of Day dialog.

4. Then locate the advanced pppaaarrraaammmeeettteeerrrsss... AAAdddjjjuuusssttt ttthhheee Ocean Fog CCCooolllooorrr to aaa pppllleeeaaasssaaannnttt bbbllluuueee
for this particular scene 107, 217, 241 RGB.

The Ocean Fog Color is the overall color setting for the
ocean; you can set this to dark blue for deeper water and
even green for polluted water.

5. It is easy to observe the changes of the fog cccooolllooorrr mmmuuullltttiiipppllliiieeerrr aaannnddd fffoooggg dddeeennnsssiiitttyyy aaannnddd iiitttsss
overall effect on visibility by moving your perspective view underwater.

6. After you have moved your camera to an appropriate view, adjust the fog color
multiplier and fog density to 0.1 and 0.02 respectively. This setting gives a decent
color on the surface of the water as well as a good view distance underwater.

Chapter 4

101

Our final changes will be to the level's environmental affection on the ocean material, which
we applied earlier.

Under the Environment tab in the RollupBar, locate ttthhheee Ocean Animation parameters:

1. We ssshhhooouuulllddd fififirrrsssttt aaadddjjjuuusssttt ttthhheee dddiiirrreeeccctttiiiooonnn ooofff ttthhheee vvviiirrrtttuuuaaalll wwwiiinnnddd bbbeeeiiinnnggg aaappppppllliiieeeddd tttooo ooouuurrr wwwaaattteeerrr... TTTooo
do this, first set the WindSpeed to 8 so as to be able to clearly see in which direction
the wind is animating the water.

2. Next, set the wind direction tttooo aaa dddeeesssiiirrreeeddd vvvaaallluuueee,,, iiinnn ttthhhiiisss cccaaassseee ssseeettt iiittt tttooo 4.

3. Bring the wind speed back to a realistic vvvaaallluuueee aaarrrooouuunnnddd 3.

4. Finally, we will adjust the size of the waves.

5. Extreme settings will cause malformations in the waves, so observe these changes
closely.

6. For our purposes, a slightly higher than normal wave height can be achieved by
setting Waves Size to 0.5 and by setting the Waves Amount to 1.

If you want to achieve choppier water conditions, then simply
increase the waves amount.

How it works...
The environmental parameters of the water and its corresponding time of day parameters are
saved within the level.

Using latest graphic card shader programmability, CryENGINE does not suffer from Z buffer
intersection with the terrain, but rather gets nice beach foam and underwater fog.

There's more...
You may want to know how the Caustics rendering works or how to animate the water
parameters. You might also want to know about the technology used in the CryENGINE
for water free from transformation rendering.

Animating water parameters
The time of day parameters for the Ocean can be animated just like any other value in the
time of day.

Environment Creation

102

Caustics
Caustics are used by default in CryENGINE 3. CCCaaauuussstttiiicccsss aaarrreee rrreeennndddeeerrreeeddd aaasss mmmaaattteeerrriiiaaalll lllaaayyyeeerrr,,, sssooo aaallllll
objects below water can be affected in and changed in real time.

Very important for realistic water look

Extra rendering pass, can handle opaque/transparent, can be done in a deferred
way, but we lack some data such as per pixel normals to give an interesting look

Based on real sun direction projection

Procedural composed using three layers

Chromatic dispersion used

Darken slightly to simulate a wet surface

Stencil pre-pass helps a little bit on performance

Free form transformation FFT water
CryENGINE 3 animates the water through an FFT algorithm on the CPU. There is a unique
advantage to this as we get even physics interation, entities, or objects floating on the waves
reacting when you jump on them and this works very naturally.

Used statistical Tessendorf animation model

Good tillable results for variety of usage: calm, choppy, and so on

Computed on CPU for a 64x64 grid, Pirates of the Caribbean 3 used 2k x 2k

Upload results into a texture volume

Vertex displacement on GPU

Lower HW specs uses simple sin waves sum.

Additionally, normals maps translation – four normal maps layers

High frequency/low frequency

Animated along water flow direction

Improving your sky with clouds
Clouds are just one example of the various object types and features supported
in CryENGINE 3.





























Chapter 4

103

Getting ready
You should have the level live_create_small open.

How to do it...
Let's use the different cloud entities available to us to populate our sky with:

1. Drag a Cloud entity into the level.

2. Place it at above 1000 meters (Z value = 1000).

3. Make sure that the Cloud entity is selected, so that its properties are displayed in the
RollupBar, then click the MTL <No Custom Material> icon.

4. This opens the Material Editor, where you can select the the desired Cloud Material.
Make sure that the Common.Cloud Shader is selected in the Material settings.

5. Scale it by selecting the Scale tool from the Toolbar, making sure to select all
three axes.

6. In order to enable cloud movement, set the AutoMove property to True and set a fade
distance to 100 to make them fade in when they reach the edge of the box in which
they are moving.

7. Then, you need to define how big the box (SpaceLoopBox) – in which they are moving
from one end to the other – should be. 2000 is the default value for all three axes.

8. Finally, you need to set the speed at which they will move. For normal clouds, you can
use 5, and for storm clouds, about 15. Experiment a bit, but remember that if you
want to select a cloud, it's wise to turn off AutoMove; otherwise, it can be difficult to
select the cloud.

The Distance Cloud Tool allows you to place planes in the sky that look like clouds if the right
texture is assigned. They are great for creating a realistic distant sky setup for your level
without causing huge render slowdown issues. Distance Clouds are basically horizontal planes
placed into the sky. Unlike other types of clouds they cannot be flown through and thus,
they're mostly suitable for filling the sky in at far distances (horizon) or high altitudes. However,
this limitation also allows for more advanced shading at a cheap price (simple single pass
shader, no impostors needed).

1. Drag the DistanceCloud entity to the level.

2. Scale it with the Scale tool to about 100, then assign one of the distance cloud
materials (all materials with distance clouds shader in materials/clouds folder can
be used). Distance clouds are 2D, so they should be placed far away or above so that
the player does not see that they are flat.

3. Finally, to place a cloud with nice shading, drag a VVVooollluuummmeee eeennntttiiitttyyy tttooo ttthhheee llleeevvveeelll...

Environment Creation

104

4. With the VolumeObjectFile set to Libs/Clouds/Default.xml, select a cloud material
in the Material Editor. Make sure that the Shader is set to VolumeObject. The cloud
can now be scaled as needed.

The difference between the normal 3D cloud and a VolumeObject is that volume object
clouds have correct self shadowing. Do not place too many volume object clouds because
they greatly affect performance.

If you assign a new material, ensure that it has the correct shader applied. For
volume clouds, you have to assign the VolumeObject shader.

How it works...
There are four distinct ways to visualize clouds in the engine. This is because there is often
the requirement for a mix of types to achieve certain effects or some types might not have to
be used. The four ways of achieving clouds in CryENGINE are:

Painting clouds into a skybox, which is very controllable for the artists. The method
is good for slower graphic cards as it only requires texturing, but it only allows static
images and it will not react when changing the time of day.

The imposter clouds are rendered in 3D to intermediate textures and requires update
after every few frames. They are slower and consume more or less memory at
runtime depending on the view.

The distance clouds which render faster, have constant memory requirements,
support time of day shading, but are not real 3D. AAA vvviiieeewwweeerrr ttthhhaaattt wwweeennnttt nnneeeaaarrr tttooo
them would see that they are a flat plane.

The volume clouds are true 3D; they even intersect with the geometry correctly and
have a constant memory requirement. The downside to rendering them is that they
are slower than the rest and in comparison look a bit blurry.

There's more...
You may want to have cloud shadows simulated in your level, which you can find out how to
do next.

Cloud shadows
Clouds don't cast real-time shadows, but there can be a (moveable) texture used that is
casted on the entire level, creating the illusion that clouds cast shadows.

Use the default cloud shadow texture (textures | clouds | cloud_pattern.dds) and adjust it in
Photoshop by painting it white in the areas where you don't want to have shadows.









Chapter 4

105

Set the Cloud Shadow Speed to 0.001 for fffaaasssttt mmmooovvviiinnnggg ccclllooouuudddsss aaannnddd 0.0005 for normal clouds.

See also
Continue to the next chapter, Chapter 5, Basic Artificial Intelligence to make it rain in
your level, which will compliment the placement of clouds.

Making it rain in your level
Rain can be an essential part of your level. There are some advanced rain techniques
available to you within the CryENGINE that will allow you to enable object interaction with
the rain and localized wet areas. This recipe will change a map to a rainy scene.

There are two distinct techniques to achieve rain in the CryENGINE. The following example will
explore both the particle-only technique and the deferred rain entity.

Getting ready
You should have the forest level Forest.cry open in the Editor.

How to do it...
We will begin by using the particle-only technique to create our first rain�

1. Drag-and-drop the ParticleEffect entity into your level from the Particle tab of the
DataBase View. The paaarrrtttiiicccllleeesss aaarrreee nnnaaammmeeeddd aaasss fffooollllllooowwwsss:::

rain.rain.space_loop = (libName).(subfolderName).(effectName)

2. The settings for how the rain.rain.spaceee___lllooooooppp functions, can be adjusted via its
property settings on the Particle tab of the DataBase View.

3. Adjust the Countscale of the Particle effect to 4 (be aware that this value multiplies
with the count value of the particle).

4. Next, set the size to 0.5 for a smaller and more realistic rain drop.

5. Next, let's limit this effect to a certain area ooofff ooouuurrr llleeevvveeelll...

6. First, make a shape and use the pick tool of the shape in the RollupBar to select the
spaceloop particle system we just created.

7. This will cause the particle effect attribute active to be activated and deactivated if
the player crosses the border of the shape.



Environment Creation

10�

You may have to set active to false to have the particle disabled when you
enter the game initially.

The next effect we will use is the PostEffect Rain that is new to CryENGINE 3. This is a rain
effect entity that will apply a post effect within its radius. These entities are placed just like
normal entities:

1. Remove the particle effect we created earlier to disable the particle only rain.

2. Drag the Rain entity from Entity | Environment in the RollupBar.

3. You can adjust the amount. A good heavy rain setting is 3.

4. Now, change the color to a dark blue or grey. If left white, it can be mistaken for snow
quite easily.

5. Finally, adjust the puddles amount to 5 and the fresnel to 4; this will give a dramatic
yet realistic looking wet effect.

This type of entity is best suited for large, out-of-door types of settings.

How it works...
The Post Effect entity renders on all objects and players in its radius. The underside of objects
will remain dry, and objects can be adjusted in real time to show how the rain runs down
slanted surfaces.

The advantage of the this entity over the simple space loop particle effect or using the wet
layer on objects is that all objects within the radius of the entity are affected and can be
changed or dynamically modified in real time. Objects can even be half in and half outside of
the light's radius. Crytek developed a genius solution in CryENGINE 3 where areas underneath
objects that would be obstructed by "real" rain are indeed occluded of the wet effect. The full
screen rain effect will automatically disable if objects are seen in screen space to be above
the player that would occlude the rain.

There's more...
You may have noticed some other Atmospheric entities available to you. The following explains
some of the ones that pertain directly to a stormy or rainy environment.

Lightning entity
Add the Lightning entity to your level from the Entity/Environment section. This will enhance
the rain and storm effect by adding a procedural particle and light effect, which can be
adjusted to suit most situations.

Chapter 4

10�

Apply the sounds | environment:fantasy:distant_thunder_oneshot to hhheeeaaarrr aaa ttthhhuuunnndddeeerrr sssooouuunnnddd
after every lighting effect. Then edit the delay to simulate the distance to the effect.

Wind
The global wind speed can be adjusted by entering the numbers (values in meter/second) into
the Environment settings wind vector field (positive y values determine fast wind to the north,
negative y to the south, positive x to the east, and negative x to the west).

This can be important as all plants and entities that have wind bending properties will react to
this and can be used to simulate strong storms.

Fog volumes
The Fog entity is used to overwrite the fog effect in specific areas. In the indoor areas, a subtle
fog effect can be added to simulate a dusty area. To use, create an Area Box and attach the
Area Box to the Fog entity. When in game mode, you can walk into the area and see how the
fog gets different inside. Outside the game mode, the fog is not visible.

5
Basic Artificial

Intelligence

In this chapter, we will cover:

Placing the enemy AI

Generating the AI navigation

Forbidden boundaries

Forbidden areas

Setting up the interior navigation

Debugging the AI triangulation

Narrowing the AI's FOV to allow attacks from behind

Respawning AI

Introduction
Realistically rendered and animated characters require state of the art AI systems to
intelligently respond to the game environment and maintain the illusion of realism. CryENGINE
3 SandboxTM lets designers control basic AI using the flow graph visual scripting system,
placing most AI gameplay control in their hands.

After creating a small environment for your Player to run around in, it is now time to place
down some AI for the Player to fight against. For this chapter, we will cover how you can
utilize many of the basic AI systems that are already in place for the CryENGINE 3.

















Basic Artificial Intelligence

110

Placing the enemy AI
In this recipe, we will show how you may place down simple AI grunts from the Entities rollout
for the player to fight against.

Getting ready
Before we begin, you must have the Sandbox 3 open

Then open My_Level.cry

How to do it...
1. In the RollupBar, click on the Entity button.

2. Under the AI folder, find Grunt.

3. With the Follow Terrain enabled, click-and-drag anywhere on your terrain.

How it works...
The Grunt is a simple AI entity that packages a whole lot of extra properties that we will
touch on later in this chapter. The Grunt itself is a simplistic human AI that borrows a lot
of its functionality from the basic actor defined in LUA, which means it shares a lot of the
human characteristics which the player also utilizes, such as movement.

There's more...
The AAAIII cccaaannn bbbeee ppplllaaaccceeeddd aaasss Entity Archetypes. AAAlllttthhhooouuuggghhh nnnooottt eeesssssseeennntttiiiaaalll,,, iiittt iiisss aaa vvveeerrryyy gggooooooddd ppprrraaaccctttiiiccceee
for the development team to create templates of enemies for the player to fight (a.k.a.
Archetypes). These Archetypes will hold any of the properties such as aaattttttaaaccckkkrrraaannngggeee,,, FFFOOOVVV,,,
Health, and other ppprrrooopppeeerrrtttiiieeesss ttthhhaaattt dddeeesssiiigggnnneeerrrsss wwwaaannnttt ttthhheeessseee AAAIII tttooo hhhaaavvveee aaacccrrrooossssss ttthhheeeiiirrr eeennntttiiirrreee gggaaammmeee...
The Archetype Library can be found in the Database view.

See also
The Creating Prefabs to store in the external libraries recipe







Chapter 5

111

Generating the AI navigation
Even though you've placed an AI down on your level, the AI may not react to the player's
presence when going into game mode. For that to happen, the AI needs some sort of
Navigation for it to trigger its basic states. This recipe will show you how to generate the
AI navigation.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

How to do it...
1. On the top main toolbar, click AI | Generate All Navigation.

How it works...
As simple as this is, this step is essential for working with AI, due to the fact that this recipe
needs to be repeated every time there is a change in the AI's navigation such as modifications
to forbidden areas, forbidden boundaries, cover spots, smart objects, interior navigation, and
so on. With that said, get used to regenerating the AI's navigation a lot.

There's more...
You can generate the AI triangulation by clicking on AI | Generate Triangulation.

Generating AI triangulation
This method of generating the AI navigation will only update the triangulation made on the
terrain and interior navigation. If you are updating only the forbidden areas or boundaries, this
generation may speed up the processing time of generating the AI navigation (especially if you
might be working with 3D volume navigation alongside it).

See also
The Forbidden boundaries recipe
The Forbidden areas recipe
The Setting up the Interior Navigation recipe
The Using the interior AI navigation points recipe
The Debugging the AI triangulation recipe















Basic Artificial Intelligence

112

Forbidden boundaries
In this recipe, we will demonstrate how you may be able to prohibit an AI from crossing an
invisible boundary by basic movement. Much like a child's play pen or a dog's yard, you will
be building a fence in an area for your AI.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Place three AI Grunts roughly five meters apart in any fashion apart in any fashion

How to do it...
1. In the RollupBar, click on the AI button.
2. From the Object Type, select ForbiddenBoundary.
3. With the Follow Terrain enabled, click four points roughly in a square around the

placed Grunts.
4. Generate the AI navigation.

How it works...
The forbidden boundary is much like a fence for the cattle on a farm. The forbidden boundary
deters the AI entities from crossing it with their basic movement behaviours, but they may still
be able to cross it if they use attacks or other special animations that change their location at
the end of the animation (for example, jumping a fence using Smart Objects). Once crossed,
they will not attempt to try and return to the other side.

Remember to regenerate the AI after creating or changing a forbidden boundary.







Chapter 5

113

See also
The Forbidden areas recipe

Forbidden areas
Where forbidden boundaries fail to keep the AI from going into certain locations, forbidden
areas are used instead. This recipe will teach you how to utilize the forbidden areas to block
off the areas that the AI entity should not go to.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Place down one Grunt AI

Place default\primitive_cube.cgf as a brush down near the Grunt AI

How to do it...
1. In the RollupBar, click on the AI button.
2. From the Object Type, select ForbiddenArea.
3. With the Follow Terrain enabled, click four points roughly in a square around the

primitive_cube.cgf.
4. On the Forbidden Area Params, set DisplayerFilled to true.
5. Generate the AI navigation.











Basic Artificial Intelligence

114

How it works...
You may have noticed that without the forbidden area present around the box, the AI Grunt
takes a significantly longer time to find a path to the player and may even get stuck running
up against it if the player is behind the box. This is because the AI does not know of the box's
existence and needs to be told to navigate around this area. Once the forbidden area is
marked up around the box, the AI will have very little trouble navigating around the object to
find the player.

Similar to forbidden boundaries, forbidden areas act as a stronger barrier against the AI
from entering into them. If the AI manages to enter these forbidden areas, then the default
AI behaviour, if active, will alert them to seek the nearest edge of the forbidden area to exit
the area as quickly as they can.

See also
The Forbidden boundaries recipe

The Debugging the AI triangulation recipe

Setting up the interior navigation
In this recipe, we will demonstrate how you may be able to get your AI to navigate on top of
objects as well as interiors.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Build a platform from the Solids tool to the dddiiimmmeeennnsssiiiooonnnsss ooofff 20 x 20 x 5

Again, using the Solids tool, build a ramp that leads up to the platform













Chapter 5

115

Also, be sure to cover the ground section around the solid with a forbidden area (see
the Forbidden areas recipe)



Basic Artificial Intelligence

11�

How to do it...
AI Navigation Modifier: BBBeeefffooorrreee wwweee ppplllaaaccceee dddooowwwnnn aaannnyyy ooofff ttthhheee nnnooodddeeesss rrreeeqqquuuiiirrreeeddd fffooorrr nnnaaavvviiigggaaatttiiiooonnn,,, wwweee
must first outline the area that we want the AI to perceive as an interior navigation. We do this
by creating an area around the object known as an AI Navigation Modifier.

1. In the RollupBar, click on the AI button.

2. From the Object Type, select AINavigationModifier.

3. With the Follow Terrain enabled and Grid Snap set to 1 meter, click eight points that
surround the platform and the ramp (remember to double-click on the eighth point to
finalize your area).

4. In the AINavigationModifier Params, change the Height value to 10 (meters).

5. In the AINavigationModifier Params, change the WaypointConnections to
Auto-Dynamic.

AI Points: NNNooowww ttthhhaaattt wwweee'''vvveee cccrrreeeaaattteeeddd aaannn iiinnnttteeerrriiiooorrr aaarrreeeaaa fffooorrr ttthhheee AAAIII tttooo rrreeecccooogggnnniiizzzeee,,, wwweee mmmuuusssttt nnnooowww cccrrreeeaaattteee
the navigation points within the area defined for the AI to use as the navigation triangulation.
To do this, we must create the AI points.

1. In the RollupBar, click on the AI button.

2. From the Object Type, select AIPoint.

3. With Follow Terrain and Snap to Objects enabled, and the Grid Snap set to 1 meter,
click 1 AI Point into a corner at the top of the platform.

Chapter 5

11�

4. Copy and paste 99 additional points covering the whole top surface with a two meter
gap between each point (10 points x 10 points).

5. Do the same with the ramp by covering the surface with 15 AI pppoooiiinnntttsss
(3 points x 5 points).

6. To connect all the points, you must now generate the AI navigation. See the
Generating the AI navigation recipe. You should now see all of your interior
navigation points connected.

Basic Artificial Intelligence

11�

Entry/Exit Points: BBBeeefffooorrreee wwweee cccaaannn gggeeettt ttthhheee AAAIII tttooo tttrrraaavvveeelll bbbeeetttwwweeeeeennn ttthhheee IIInnnttteeerrriiiooorrr NNNaaavvviiigggaaatttiiiooonnn aaannnddd ttthhheee
Terrain Navigation, we must first create Entry�Exit Points from the AI points that are placed
onto the Terrain, but also within the Navigation Modifier.

1. Copy three of the AI points on the lowest end of the ramp and place them onto the
Terrain two meters away from the lowest AI points.

2. Selecting each point one by one, change their Type from Waypoint to Entry/Exit.
3. Select the AINavigationModifier and Edit Shape to move the two points at the end of

the ramp to come out a bit farther to wrap around the three entry/exit points.
4. Generate the AI navigation.

How it works...
The Interior Navigation is a node-based AI triangulation tool. This tool allows for specifically
placed nodes to act as vertex points for the break up of the triangulation. Using the interior
navigation nodes also allows for 3D navigation to be possible, so that the designers are able
to create land bridges to allow AI to travel across the top as well as underneath the bridge.
This method is used in cases where the object that the AI needs to travel on is roughly two
meters higher than the terrain triangulation.

There's more...
Here is some additional information about the interior navigation points that you should know.

Auto-Dynamic Points versus Designer Controlled Points
The main difference between the generation of the AI points for the interior navigation is that
the Designer Controlled Points are AI points that can manually be linked by the designer. It
usually takes a long time to link these points up, but if – for whatever reason – the designer
needs to have total control over how the links operate, then this is possible.

However, Auto-Dynamic automatically links the nodes if they are within the range of another
node (defined by NodeAutoConnectDistance) and is not obscured by the edge of the
AINavigationModifier.

Chapter 5

11�

See also

The Forbidden areas recipe
The Debugging the AI triangulation recipe
The AI Anchors recipe

Debugging the AI triangulation
In this recipe, we will be showing you how you can debug the AI's triangulation through
certain cvars.

Getting ready
Before we begin, you must have Sandbox 3 open
Then open My_Level.cry
Complete the previous recipes with the basic AI

How to do it...
ai_debugdraw 1: Shows the basic information for all AI within the level (Behaviors,
Actions, Target, Stance, and so on).















Basic Artificial Intelligence

120

ai_debugdraw 74: Shows both the interior navigation nodes as well as the terrain
triangulation with the current AI navigation information (generate the AI navigation to
update this information).

How it works...
Utilizing both the debug methods will allow the designers to identify where the AI is going and
how the AI is utilizing the triangulation that was generated within the level.

See also
The Placing the enemy AI recipe

The Generating the AI navigation recipe

The Forbidden boundaries recipe

The Forbidden areas recipe

The Setting up the interior navigation recipe













Chapter 5

121

Narrowing the AI's FOV to allow attacks
from behind

In this recipe, we will be showing you how you may be able to manipulate the AI's primary and
secondary FOVs to allow the player to have an easier time to sneak up on the AI from behind.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Complettteee ttthhheee Placing the Enemy AI recipe

How to do it...
1. Change the following entity parameters on the AI Grunt that is placed:

awarenessOfPlayer = 0

2. Perception sub rollout

FOVPrimary = 40

FOVSecondary = 80

How it works...
awarenessOfPlayer hhhaaannndddllleeesss iiifff ttthhheee AAAIII kkknnnooowwwsss wwwhhheeerrreee ttthhheee ppplllaaayyyeeerrr iiisss aaattt aaallllll tttiiimmmeeesss...
Making sure this value is false makes the AI do perception checks to see if it
can find the player.

FOVPrimary handles the main FOV of the AI and uses a quick reaction system if the
player is caught within this FOV.

FOVSecondary handles the peripheral vision, which uses a slower reaction system to
investigate the location of where the AI spotted suspicious activity within that area.



















Basic Artificial Intelligence

122

There's more...
ai_DrawAgentFOV = 1 allows the designer to see the AI's FOV and sight range within the
viewport (this must also have ai_DebugDraw = 1 turned on as well).

See also
The Placing the enemy AI recipe

Respawning AI
In this recipe, we will explore how you will be able to utilize the Territory and Wave systems
along with a little bit of FlowGraph scripting to make your AI respawn after a couple of seconds
of death.

Getting ready
Before we begin, you must have Sandbox 3 open

Then open My_Level.cry

Place down one Grunt within the level









Chapter 5

123

How to do it...
Making a territory:

1. From the RollupBar, open the Objects tab and click the Entity button.

2. Open the AI folder and select AITerritory.

3. Click down four points to surround the AI Grunt (double-click to finalize).

Placing the AI wave entity:

1. From the RollupBar, open the Objects tab and click the Entity button.

2. Open the AI folder and select AIWave...

3. Place the AI wave entity close to the AITerritory.

Linking the territory to the wave:

1. Select AITerritory1 and click the Pick button.

2. Click AIWave1 to pick that entity as the target.

Giving the AI Grunt the territory and wave IDs:

1. Select the Grunt.

2. Under Entity Properties2, assign AITerritory1 as the territory and AIWave1
as the wave.

Creating a simple FlowGraph (FG) to respawn the Grunt:

1. Right-click AIWave1 | Create Flow Graph.

2. Click OK.

3. Select AIWave1 from Viewport.

4. In FG, right-click | Add Selected Entity.

5. Select AITerritory1.

6. In FG, right-click | Add Selected Entity.

7. In FG, right-click | Add Node | Misc | Start.

8. In FG, right-click | Add Node | Time | Delay.

9. Copy and paste the Time:Delay node and set the Delay integer on the second node
to 5 (seconds).

10. Link (click-and-drag) Start output to In on Time:Delay 1 second.

11. Link out from Time:Delay 1 to Enable on AITerritory1.

12. Link Enabled from AITerritory1 to Enable on AIWave1.

13. Link Dead from AIWave1 to In on Time:Delay 5.

Basic Artificial Intelligence

124

14. Link out from Time:Delay 5 to Spawn on AIWave1.

How it works...
With the AI territories and wave system, we can link this into a flow graph to allow the AI within
the territory and wave to respawn after five seconds of their death. Anything outside of the AI
wave will not respawn.

There's more...
Here are some definitions for the AI territory and wave FlowGraph nodes that you should
know about.

AI territory FlowGraph node properties
Input:

Disable::: TTThhhiiis diiisssaaabbbllleeesss ttthhheee ttteeerrrrrriiitttooorrryyy
Enable: This enables the territory
Kill: This kills all active AIs of this territory
Spawn: (Re-)Spawns AIs assigned to this territory (but not assigned to any wave)

Output:

ActiveCount: Outputs the number of currently active AIs assigned to this territory
Dead: Fires when all AIs assigned to this territory are dead (works also for
respawned AIs)
Disabled� Fires when the territory gets disabled (it doesn't fire on level start, although
all territories are disabled from start automatically)
Enabled: Fires when the territory gets enabled
Spawned: Fires when AIs are spawned via the spawn input (if the territory was
disabled before, it gets enabled and the enabled output fires as well)



















Chapter 5

125

AI wave FlowGraph node properties
Input:

Disable: This disables the wave

Enable: This enables the wave

Kill: This kills all active AIs of this wave

Spawn: This (re-)spawns AIs assigned to this wave

Output:

ActiveCount: Outputs the number of currently active AIs assigned to this wave

Dead: Fires when all AIs assigned to this wave are dead (works also for
respawned AIs)

Disabled� Fires when the wave gets disabled (it doesn't fire on level start, although, all
waves are disabled from start automatically)

Enabled: Fires when the wave gets enabled

Spawned: Fires when AIs are spawned via the spawn input (if the wave was disabled
before, it gets enabled and the enabled output fires as well)



















�
Asset Creation

In this chapter, we will cover:

Where to install the CryENGINE 3 plugin for 3ds

Creating textures using CryTIF

Setting up units to match CryENGINE in 3ds

Basic material setup in 3ds

Creating and exporting static objects

Creating and exporting destroyable objects

Using advanced material editor parameters to create animation

Creating new material effects

Creating image-based lighting

Introduction
In this chapter, we will explore the fundamentals, as well as some advanced techniques, to
creating real-time game assets for the CryENGINE 3.

Throughout this chapter, we will use 3dsMAX2010 and all examples will assume a basic
understanding of that package.

CryENGINE 3 also supports Maya; see mycryengine.com for
more details.



















Asset Creation

12�

The CryENGINE 3 using a system that considers two types of assets:

Source assets, which include .TIF format textures and any other uncompressed
information

Target assets, which include .DDS and other compressed data and may be specific to
the target platform (Xbox, PS3, and others)

The handling of these different file types is by the resource compiler, which is explained in
Chapter 1, CryENGINE 3: Getting Started.

We will follow the overall explanation of the asset pipeline for CryENGINE by exploring each
step from start to finish.

Installing the CryENGINE 3 plugin for 3D
Studio Max

As we will be using 3D Studio Max 2010 in the asset creation examples of this book, it
is important that we explore the installation of the plug-in for 3ds max to allow for the
exporting of meshes, animation, and other data to CryENGINE.

This first step in creating assets for the CryENGINE 3 is an important one. As most assets
used within the CryENGINE need to be in an optimized format, we must export all of the
source assets (asset we will work on in external packages like 3d studio max and Photoshop)
through an optimization and conversion process. For this process to be successful it is
imperative that the RESOURCE COMPILER be setup properly.

The SDK installer should automatically install the plugins for the installed
versions of 3ds Max during the CryENGINE 3 tools installation. In this case,
the installer automatically sets up the system path, which allows the exporter
to communicate with the Resource compiler.





Chapter 6

12�

Getting ready
To prepare yourself for asset creation, you must have the CryENGINE 3 SDK installed.

Before copying the plugin to the required 3ds Max directory ensure 3ds max is shutdown.

Locate the following .dlu file that is matched to the 3d studio max version you will be using.
These files are found in the /tools directory of your build.

3ds Max 9 32 bit use CryExport9.dlu
3ds Max 9 64 bit use CryExport9_64.dlu
3ds Max 2008 32 Bit use CryExport10.dlu
3ds Max 2008 64 Bit use CryExport10_64.dlu
3ds Max 2009 32 Bit use CryExport11.dlu
3ds Max 2009 64 Bit use CryExport11_64.dlu
3ds Max 2010 32 Bit use CryExport12.dlu
3ds Max 2010 64 Bit use CryExport12_64.dlu

How to do it...
1. Once you have located the .dlu file that is associated to your installation of 3ds Max,

copy this file to the plugins directory of your 3ds Max directory.

C:\Program Files\Autodesk\3ds Max 2010\plugins\CryExport12_
64.dlu is the installation path and we will use 3ds Max2010 x64 bit for the
examples in this book.

2. Open 3ds Max.

When the plugin initializes, you will be presented with a setup screen to direct the
exporter from 3d studio max to the resource compiler in your installation.

















Asset Creation

130

3. In our example, we have our installation located in:

C:\Crytek\CryENGINE3

4. On clicking Ok you will now be able to access the exporter through:

Utilities | More | CryENGINE Exporter

How it works...
Now that we have installed the CryENGINE 3 exporter for 3ds and directed it to our resource
compiler, we can export a variety of assets and objects to a CryENGINE format ready for use
in Sandbox.

There's more...
There are a host of tools available to 3ds Max users that are shipped within the CryENGINE
SDK. Find out more later on how to install and activate these extended tools, and what they
are used for.

3ds Max CryTools Maxscripts
During installation, the CryTools Maxscripts may have been installed to your installation of 3ds
Max depending on the settings used during installation. These CryTools scripts are a collection
of Maxscript tools that were developed by various artists throughout the development of
Crysis and over various iterations of the engine. These are all coded in Maxscript format
and thus are only compatible with 3ds Max.

The tools are separated into logical areas of:

Animation

Artist

Morph

Rigging

Installing the 3ds Max CryTools Maxscripts
If the SDK installation does not install the CryTools Maxscripts, they can be manually
installed. To install them simply copy the LoadCryTools.ms located under the /tools/
CryMaxTools to the Scripts/Startup of the 3ds Max installation directory.

Uninstalling the 3ds Max CryTools Maxscripts
To uninstall the tools, delete the LoadCryTools.ms file located in the Scripts/Startup
folder of the 3ds Max directory.









Chapter 6

131

See also
Having installed the required tools, you may want to go straight to the Creating and
exporting static objects recipe later in this chapter

You may also want to re-run the installation of the CryENGINE SDK, which is covered
thoroughly in the Installing the CryENGINE SDK recipe in Chapter 1, CryENGINE 3:
Getting Started

Creating textures using CryTIF
The textures we will create throughout the course of this book will be created in Photoshop
and will be stored in the TIF image format saved using the CryTIF plugin.

CryTIF is a Photoshop plugin developed by Crytek that can load and save merged Photoshop
images as .TIF files. When saving the .TIF file, the plugin calls upon the Resource Compiler to
display a dialog to the user where the compression settings can be selected. The settings that
get chosen in the dialog are stored as metadata on the TIF file.

It's important to realize though that the .TIF format images are not used directly in the engine
but are rather converted to a more optimized format, in this case, from a .tif to a .dds, by
the Resource Compiler.

Getting ready
Let's go over what you need to do to be able to create textures for CryENGINE.

Photoshop must be closed for the installation of the CryTIF plugin to work.

You should have completed tutorial one or have run the SettingsMgr.exe to ensure that
the build path is set up correctly to your installation of the CryENGINE 3. You can find the
SettingsMgr.exe in the root directory under /Tools.

The SDK installer should automatically install the plugins for the installed
version of Photoshop during the CryENGINE 3 tools installation.

In case a manual installation is required, copy the following files to the root
Photoshop directory:

Bin32\zlib1.dll

Bin32\jpeg62.dll

Bin32\libtiff3.dll











Asset Creation

132

Copy the file that enables support for the CryTif format

Tools\CryTIFPlugin.8bi to the root Photoshop \Plugins folder.

How to do it...
Let's go ahead and create our first texture�

1. Start Photoshop.

As we will simply be creating our first .TIF file, a complex texture is not required.

2. Create a new image with dimensions 512 x 512.

3. Create a simple pattern or import your own texture.

If your texture has an alpha channel on it, the CryTIF plugin will
detect this and change its conversion process automatically.

4. Next, select File | Save As in Photoshop.

5. Save this file as a CryTIF (.TIF) file type. This format should now be available as a file
format in the Photoshop file dialog.

6. Save this texture to your root directory under textures/test_pattern.tif.

Chapter 6

133

Once you select Save you will be presented with the CryTIF texture dialog. The primary
function of this dialog is to add metadata to the texture, which can later be used by
the Resource Compiler to compress the texture appropriately for whatever platform it
is being created for.

In the upper area, you can see two images: the original image on the left, and a
preview of the processed image using the preset on the right.

Directly below the two images are the different image properties such as resolution,
number of mip maps, texture format, and memory consumption.

7. In this example, take the preset diffuse_lowQ.

8. Click one of the image previews and use your mouse wheel to preview the tiling of
the texture.

9. Finally, notice the effects of reducing the resolution in this image by setting the
reduce resolution to 2 (1/16th memory).

The preview image updates to show the compression that will be applied to the
texture when conversion is performed:

Asset Creation

134

Reducing resolution can drastically improve performance but can
degrade the visual appearance.

10. Set the reduce resolution back to 0.

11. Click on Generate Output to manually perform the .TIF to .DDS conversion.

Pressing the Generate Output button forces an immediate conversion to the target
output format without closing the CryTIF dialog box.

12. Click OK to write the meta data to the .TIF file and to save the .TIF, which is now ready
for use in CryENGINE!

How it works...
When applying a texture to a material in CryENGINE using the .TIF extension, it will
automatically load the .DDS version. For example, a diffuse texture path of textures/
test_pattern.tif will load the file textures/test_pattern.dds at runtime.

The CryTIF (.TIF) format is used in the overall asset creation pipeline as an intermediate file
format. The .TIF format is used because it contains the uncompressed texture information
as well as having the ability to store different settings for the Resource Compiler as
meta information.

Creating .dds files manually or without the Resource Compiler
is not recommended.

There's more...
The CryTIF plugin is a very artist-friendly tool, but it can be even more powerful when the
presets and the .dds file generation are completely understood. These are discussed further
as follows.

Editing the CryTif plugin root path
Should an error occur and the system path to the root directory is lost by the plugin, you can
restore the path Photoshop under Help/About Plug-In/CryTIFPlugin.

If the RC executable cannot be found, the configuration dialog will be opened automatically
and a path to your root directory can be entered.

Chapter 6

135

Adjusting the default presets in the CryTIF dialog
This drop-down list holds the presets that the texture can have saved onto it for use in
conversion. It is important to select an appropriate preset for the type of texture you are
creating, as not all textures can use the same settings; normal maps, for example, require
a different compression than diffuse maps. Some common presets used are Diffuse_highQ
for a diffuse texture, Specular_HighQ for specular, and Normalmap_highQ for Normalmaps.
The preset with _lowQ produces slightly lower quality results at the benefit of less memory
consumption in some cases.

You can add new presets to the .ini file by locating the file in the bin32/rc/. By default,
the resource compiler uses the rc_presets_pc.ini file.

Manually generating the .DDS output
As the .DDS file is used as the final output, it is possible to edit the source .TIF file and then
switch to CryENGINE and look at the results of the settings that you have changed instantly.
The resource compiler automatically reloads/updates changed textures when Sandbox is
running. This is commonly used for quickly testing compression settings without reopening
the texture dialog box with every new conversion setting.

See also
Now, having created a texture for use in CryENGINE, you can preview it quickly by
jumping to the Making basic shapes with solid tool recipe in Chapter 3, Basic Level
Layout. You can apply this texture to whatever solid you create

You may also want to continue to the next recipe to set up your units in 3ds to be able
to model your own objects to apply your texture to

Setting up units to match CryENGINE in 3ds
The CryENGINE 3 uses a metric scale to represent objects, distance, and size. It is
important to keep this in mind when making photo-realistic assets. To make objects
accurate to real-world measurements the unit setup in your DCC package must be set
up to match the scale in the engine.

Getting ready
To prepare yourself for modeling objects for use in CryENGINE, 3ds Studio Max must be open.





Asset Creation

13�

How to do it...
Different game engines use a different scale to represent objects; in our case let's set up our
3ds Max application to work with CryENGINE 3:

1. Along the top menu bar of 3ds locate Customize. Click it and select Units Setup
from the list.

2. In Unit Setup, change the Display Unit Scale to Metric Meters.

3. Next, click System Unit Setup.

4. From here change your System Unit Scale to 1 Unit = 1.0 Centimeters.

5. Click OK to go back into your 3DS Scene.

Chapter 6

13�

Depending on the size of your asset, you may require different grid settings
for accurate representation of scale.

How it works...
Now that the scale and unit size have properly been set up, we can now accurately represent
our model in 3ds Max the way it is meant to be rendered in CryENGINE.

It is common for some artist to load a scale human model when making some assets to
maintain believability.

One of the major advantages of using metric with 3ds is that it makes all unit inputs and
calculations, for example, when creating primitives, match the metric values.

There's more...
Unit setup can be a bit broader than just setting metric units. To learn about techniques used
when working in metric scale within 3ds as well as some measurement references, continue
to the following section.

Grid and Snap settings
Depending on the type of asset you may be creating, it is recommended to adjust the view
port grid to a suitable setting.

Click the Tools menus at the top of 3ds and then go to Grids and Snaps and finally select
Grids and Snaps Settings.

In these settings, you can change the Grid Spacing to other values. For large objects using a
grid spacing of 1 meter is recommended. For smaller objects 1 cm is usually sufficient.

Measurement reference
The following reference measurements were originally created for the game Crysis, but are
useful as a guide for creating new assets:

Table Height (top of table) = 75 cm

Seat height (top of chair, seat) = 46 cm

Stairs height = power of 75 cm (150 cm, 225 cm, 300 cm, 375 cm, 450 cm)

Stair steps = 18.75 cm (4 steps will sum up to 75 cm)

Boxes = 60cm x 40cm x 40cm

Hide Objects (which AI are prone to hide behind) = objects that are smaller than
120 cm













Asset Creation

13�

Hide Objects (which AI crouch to hide behind) = objects that are bigger than 120 cm

Hide Objects (which AI stand to hide behind and strafe left/right to leave cover) =
objects that are bigger than 180 cm

Jump over Objects (standing, without hand) = 30 - 50 cm high

Jump over Objects (running jumps) = 50 - 100 cm high

Jump over Objects (sideways, using hand) = 120 - 150 cm high

See also
Having set up your units in 3ds max you should now continue to the basic material
setup in 3ds recipe in this chapter, or skip to creating and exporting static objects for
3ds to immediately get your geometry into the Sandbox

Basic material setup in 3ds
Before using textures and the advanced shading on objects, the CryENGINE needs the object
to have a material ready to be read by the engine. These materials are stored as .MTL files.

In this recipe, you will learn how to create a material using 3ds Max and translate that
material's information into an MTL file.

Getting ready
In this example, we will create a material for a basic prop with a texture and collision. To begin,
open 3ds.

How to do it...
Let's set up our material for export to the engine:

1. Open the Material Editor in 3ds Max by pressing the keyboard shortcut M.

2. Create a new Multi�Sub-Object material in the first material slot by clicking the
Standard button.













Chapter 6

13�

3. Select Multi/Sub-Object from the dialog that opens.

4. Next, set the number of sub materials to two by clicking the Set Number button in the
newly created material.

CryENGINE 3 supports up to 32 sub materials; however,
every sub-material that is rendered will add to the overall
draw call count of the asset. For the best performance
keep the number of sub-materials low.

We should give the material and all sub-materials appropriate names. As and when
we create the .MTL file, these names will be transferred and used by the engine.

The name of the material that you assign to an object in 3ds
Max must be the same as the name of the .MTL file created.

Asset Creation

140

5. Name the parent material to wooden_prop and the subsequent sub-material to
texture and proxy.

6. This next step is very important as each sub-material must be opened and the
Shader Basic Parameters section changed to the Crytek Shader type.

Only use the Crytek Shader for the materials on objects.

Having selected the Crytek Shader for both submaterials, you would have seen a new
parameter for these materials under the heading of Physicalization.

Chapter 6

141

This setting controls the way the material acts in the engine, particularly with physics.

The default setting can be used for most materials as it has no additional physics
capabilities.

7. Select the Proxy sub-material and change its Physicalization type to Physical Proxy
(NoDraw). This will cause any geometry assigned this sub-material to be ignored by
the renderer making it invisible to the user.

8. Next, to actually physicalize the material in the engine, select the Physicalize
checkbox.

If Physicalize is disabled, the object will not physically interact
with anything in the game world.

Now that our material is set up, we can create the .MTL file.

The .MTL file must be created in the directory you plan to save your assets in.

9. Open the CryENGINE export and locate the Material Rollout.

Ensure that the top-most material is active; you should see all the sub-material in
their list. If a sub-material is active while creating the .MTL file, the file will contain
only that sub-material.

10. Create the .MTL file by clicking on Create Material.

The Sandbox Material Editor window will open.

Asset Creation

142

11. Click Create Material in 3ds Max a second time.

You will then, finally, be asked to enter a filename for the new MTL file.

Again ensure that this name is the same as the name of the material in 3ds Max.

12. For this recipe, save this material as wooden_prop.mtl to a folder named
objects/wooden_props/

13. Click Save when completed.

How it works...
Multi/Sub-Object materials allow a mesh to have multiple material IDs on a per poly level. This
means that two welded triangles can have different material IDs. This is useful many times
when making complex objects.

The material has now been created and is readable by the engine. The .MTL files are .XML
files that can be manually edited, if so desired.

Now that we have created this .MTL file, we can assign textures to it and use it for new or
existing assets in the engine.

There's more...
You may want to know how to add textures to the 3ds max material now that you have created
or got more information on the Physicalize parameter.

Assigning textures in 3ds Max to materials
You can assign textures to each submaterial, except for the Physical Proxy (NoDraw)
submaterial which, as discussed, will not be rendered. The main three slots that are used for
textures before generating or exporting an .MTL are the diffuse, specular, and bump slots.

Physicalize
When the Physicalize checkbox is checked, it actually stores information on the mesh for it
to be physical. Simply setting a material to physicalize in 3ds and exporting it to engine will
not cause it to be physical when applied to other objects. It is thus important to realize that
adjusting the physical properties of collision will likely require a re-export of your mesh.

Chapter 6

143

See also
Having now created a material, you are ready to move onto the next recipe in this
chapter, which teaches you how to create and export static objects

Go back to the Creating textures using CryTIF recipe earlier in this chapter to create
some textures to assign to your material

Creating and exporting static objects
Static geometry is used for various objects in the environment that do not have any special
properties assigned to them. Some obvious examples could be walls, some structural
components of levels, and other natural objects like large rocks.

Most of these would be considered static geometry because, typically, these objects would not
need to have any advanced object setup to work.

In this recipe, we will make a typical wooden prop. As this tutorial is meant to show the
process of exporting a basic mesh, it is not essential that you create an identical asset to
the one created in this recipe.

Getting ready
This tutorial assumes that users understand the basics of 3ds Max, such as the user interface
and the creation of simple geometry. It also assumes that the user can place objects into a
level using the Sandbox Editor.

All directories containing objects must be placed under the root game folder
in the Game\Objects folder. Objects placed outside of the Game folder
won't work in the engine.

You should have just completed the Basic material setup in 3ds recipe previously and thus
should have 3ds open.





Asset Creation

144

How to do it...
Let's go ahead and get our hands dirty by making some models:

1. First let's create some geometry for your first object.

In this example, I have created a simple cylinder-type mesh that will become a
wooden barrel. I have thus named the object or node in 3ds as wooden_barrel_
simple:

2. As the pivot of the object in 3ds Max will be the pivot of the object in the engine, align
the pivot to the origin. This will make placing the object easier once it's in Sandbox.

3. Next, let's assign a material to our object. You can use the material we created in the
previous recipe or create a new multi/sub-object material with two submaterials and
name it wooden_prop.

4. To assign the wooden_prop material to the wooden_barrel_simple object, select
the object and open the material editor.

5. Next, click on the Assign Material to Selection icon.

Now that we have our material applied, we can assign a texture.

Chapter 6

145

6. Before assigning textures to our mesh, we must first make sure we have UV-mapped
our object and that it has smoothing groups assigned. It is typically easier to preview
smoothing groups with no texture being displayed.

During export, if smoothing groups are not found on the mesh,
the exporter will generate them automatically, which can cause
errors to appear on the mesh.

In this example, I created a simple cylindrical unwrap:

We can now assign a texture to the first submaterial. Ensure all the polygons in your
object are set to material ID 1.

7. Assign an appropriate wooden-type texture to the material.

Asset Creation

14�

8. Finally, before exporting, it is important that your mesh be an editable poly or editable
mesh and the modifier stack should be collapsed to avoid any unsupported modifiers
on export.

9. Save your .MAX scene at the same location as you want to store the asset. In this
case, save the .MAX scene to Game\objects\wooden_props\wooden_barrel_
simple.max.

10. To export the object, open the 3ds exporter and locate the Object Export section at
the top of the interface. Select your prop and click on the Add Selected button. You
will notice its name is added to the export list.

11. Next, select the type of file you'd like to export. In this case, it is a geometry or .
CGF file.

12. Next, click the Export Nodes button. This will export the object to the same folder as
the 3ds Max file. By default, the exported object will be given the same name as the
3ds Max filename, in our case wooden_barrel_simple.cgf.

The final step of this process is to preview the asset in engine!

13. Open up the CryENGINE Sandbox and load a level.

14. On the rollup bar, select brush and browse to wooden_props/wooden_barrel_
simple.cgf and drag it into the level.

You will see that the geometry is there but the texture is red and reads replace me.

This is simply telling us that our .MTL file does not have a valid texture in the
diffuse slot.

Chapter 6

14�

15. To rectify this, select the prop and open the Sandbox Material Editor.

16. Click the get material from selected tool.

17. Then, browse to the diffuse slot of your object and using the browse button locate the
texture you want to use for the object.

How it works...
To visualize objects in a world, CryEngine uses the concept of render nodes and render
elements. Render nodes represent general objects in the 3D engine. Among other things,
they are used to build a hierarchy for visibility, allowing physics interactions, and finally for
rendering. For actual rendering, these nodes add themselves to the renderer passing an
appropriate render element, which implements the actual drawing of the object in engine.
These objects are all seen as Y+ facing forward in the CryENGINE.

There's more...
You will definitely want to know more about optimizing the physics and collision of objects
using a collision or proxy mesh. You can also learn about occlusion geometry and user-defined
physics properties next.

Asset Creation

14�

Physics proxy
The physics proxy is the geometry that is used for collision detection. It can be part of the
visible geometry or linked to it as a separate node. Usually the physics proxy geometry is a
simplified version of the render geometry but it is also possible to use the render geometry
directly for physics. However, for performance reasons, the collision geometry should be kept
as simple as possible since checking for intersections on complex geometry is very expensive,
especially if it happens often. A physics proxy is set up in the DCC tool exclusively. The only
setup needed in Sandbox is assigning the surface type.

Occlusion geometry
A simple geometry object that represents the shape of the render geometry is created in the
DCC tool. It must be named "$occlusion" and linked to the object to which it belongs. In our
example, this is the wall piece. No special material setup is needed.

Important notes:

Occlusion polygons will always be treated as double-sided in the engine. A simple
single-sided plane in the DCC application might be a sufficient occluder for a solid wall.

Occlusion geometry usually has to be rasterized on the CPU, which is a lot slower
than drawing it on the GPU. So, keep the number of polygons of the occluder
geometry as low as possible; for example, just use a single-sided plane for a
complex wall.

User defined properties
It may be required that some objects have specific information or properties applied. This can
be accomplished through using the User Defined Properties in 3ds Max. Select an object
and on the Edit menu, click Object Properties to access the User Defined Properties of
that object.

Some common parameters used are:

box – Force this proxy to be a Box primitive in the engine

cylinder – Force this proxy to be a Cylinder primitive in the engine









Chapter 6

14�

capsule – Force this proxy to be a Capsule primitive in the engine
sphere – Force this proxy to be a Sphere primitive in the engine
Mass = Value defines the weight of an object mass = 0 sets the object to unmovable

See also
Having created and exported an object you can go to the Utilizing Geom entities
instead of Brushes recipe in Chapter 3, Basic Level Layout
Go to the next recipe in this chapter to learn how to create and export
destroyable assets

Creating and exporting destroyable objects
There are several methods of setting up breakable assets that the player can destroy in
CryENGINE. In this recipe, we will be going through the creation of a destroyable object.

Destroyable objects are assets that contain the original object and pre-created pieces that
spawn when this original object is destroyed. It destroys into the pre-created pieces when
taking more damage than the specified "health" property of the entity placed in sandbox
as a destructible object.

Good candidates for destroyable objects are glass bottles, explosive barrels, computer
monitors, and wooden barrels. Larger objects can also be destroyable, but it will depend
mostly on what the game play calls for, such as a destroyable vehicle or wall.

All of these assets normally consist of pre-created pieces that emit when the object
is destroyed.

Getting ready
You should have already created a basic object that you will in turn make destructible.

In this recipe, we will use the wooden_barrel_simple asset created in the last recipe.

How to do it...
To create a .CGF containing the object's broken pieces, we must create them as submodels
for our main mesh.

Each submodel also must have physics proxy geometry. The submodel's name and its User
Defined Properties determine its behavior.

The object must consist of the main original model.

This node or object MUST be named Main that will act as the alive geometry.











Asset Creation

150

Main is the (only) pre-destruction submodel.

We must now create a new mesh that will be the destroyed geometry that will replace
the original mesh when the object is destroyed. Essentially this new mesh will act as the
dead geometry.

Name this object remain. It will be used as the permanent post-destruction submodel, which
replaces Main when the object's state changes from alive to dead.

If no node is named remain then all pieces
other than main will be destruction pieces.

This model should consist of different and realistically broken pieces that will be spawned as
the destroyable object is destroyed.

Each one of these pieces needs to have a physical proxy.

Chapter 6

151

Before exporting the object, place all objects at origin, so that they are intersecting each other.

The orientation in world coordinates should be 0/0/0 for all the pieces.

Turn OFF Merge All Nodes and click export.

The CGF must be exported with the Merge Multiple Nodes checkbox
deselected, to produce multi-piece geometry.

Object can now be placed in Sandbox as a destroyable entity.

By default, the pieces spawn in the position in which they are placed in the CGF, relative to the
original model.

How it works...
A destroyable object can be in two distinct states, an "Alive" state or a "Dead" state.

In the "Alive" state, the object acts precisely like you'd expect a normal physical entity to react.
It can be set up to be a rigid body or a static physical entity.

After taking more damage than the specified "health", it will go into the Dead state. When
going into the Dead state, as a destroyable object entity it can optionally generate a physical
explosion and apply area damage on the surrounding entities. It can spawn a particle effect,
and finally replace the original geometry of the entity with either destroyed geometry and�
or pre-broken pieces of the original geometry. When the object breaks due to a hit from a
projectile, this hit impulse is applied to the pieces in addition to any explosion impulse that
occurs on the entity.

There's more...
As there can be many different types of breakable assets used within the CryENGINE you will
likely want to know more about the different types of destructible and physical reactions you
can create for objects.

Two-dimensional breakable assets
Using 2D breakable objects is a useful technique for level objects like glass, ice, wood, or
walls. The technique works very well with thin and mostly flat mesh objects. This is controlled
through the surface type of an object set in its .MTL file.

Some surface types have been specifically set up for two-dimensional breakage.

Some rules for these objects are that the object must be seven times thinner, in the direction
of breaking, more than the length of the other two axes. Each triangle on the object cannot
exceed 15degrees deflection between them, so keeping these meshes flat is a good idea.

Asset Creation

152

Jointed breakables
Breakable objects are also sometimes referred to as jointed breakables. These are structures
that are built of separate meshes being held together by virtual joints rather than having sub-
models spawn. On destruction all the pieces are already rendered.

The parts can be individually disjointed by applying physical force bigger than the joint limits
by using things like a gun, or by player interactions such as explosions, and so on.

Some good examples of breakable objects are road signs, wooden fences, or a wooden shack.
All these assets are made of parts that are assembled, like in the real world.

Breakable objects are generally placed as brushes or geometry entities. However, you can
also place them as BreakableObjects Entity.

For furniture or anything that doesn't require a base attached to the ground that remains
after it's broken, it is better to use a rigidbodyEx or a basicEntity. If you need the remaining
part to stay static, then it is better to use a breakable object, and specify the mass of the part
as 0. If this isn't done, the engine will determine – at random – which part 'remains' as the
static object.

User defined properties
Some parameters can be added to individual objects in a destroyable object asset:

generic = count: This causes the piece to be spawned multiple times in random
locations, throughout the original model. The count specifies how many times it is
spawned. There can be multiple generic pieces.

sizevar = var: For generic pieces, this randomizes the size of each piece, by a
scale of 1-var to 1+var.

entity: If this is set, the piece is spawned as a persistent entity. Otherwise, it is
spawned as a particle.

density {{density or =mass}} = mass: This overrides either the density or
the mass of the piece. Otherwise, it uses the same density as the whole object.

See also
Having learned how to use physics and breakables, go to the Chapter 11, Fun Physics
to use your destructible objects in unique ways











Chapter 6

153

Using advanced material editor parameters
to create animation

In many cases, it is required to animate textures scrolling or oscillating in their uv space.
This can be used efficiently for things like computer screens or TV screens that have
animated noise.

Getting ready
The Sandbox must be open and you must have applied a basic material to a solid.

How to do it...
Let's start using some of the advanced material parameters available to us:

1. Clicking a + sign beside any of the texture slots will open some advanced parameters
for the texture.

2. In this recipe, let's set an interference texture shipped with the SDK to the Decal slot
of an object.

3. Next, set the TypeU parameter to constant moving.

Asset Creation

154

4. Now, set the rate and amplitude to 1 and 1.5 respectively.

5. Set the glow to 1 so that you can observe this particular texture scrolling through the
uv space of the object.

You can now make all kinds of variations using these parameters and can experiment using
animation on the diffuse slot and other textures!

How it works...
In this example, we have created a simple interference-type effect that can easily be applied
to any screens or electronics in your level.

This technique is not only limited to being used for interference textures but it's also used
often with any flowing type of objects. A good example is to use this on small rivers or lava.

There's more...
There are other techniques that can be used when adding variations and advanced material
parameters. Some of these are explained next.

Animated textures
In order to animate textures in Sandbox, the texture name in the Editor must be set up
according to specific naming conventions.

The technique is used to switch sequentially between a certain amount of textures at a
particular rate:

prefix##ns_nesuffix(time).

prefix – is the Start of the texture name.

– is the number of digits in the animated sequence. Putting two # symbols allows
for sequences of over 10 frames.

ns_ne – are the first and last numbers of animated sequence images.

suffix – optional end of texture name.

Time – optional time of single frame in seconds (default value is 0.05 seconds
= 50 ms).

An example of an animated format is bubbles##00_12simulation(0.05).dds.

This means the texture sequence with the names: bubbles00simulation.dds,
bubbles01simulation.dds, bubbles02simulation.dds through bubbles12simulation.
dds is animated with the speed of 50 ms per frame.













Chapter 6

155

Vertex deformation

The CryENGINE material system allows us to animate vertex deformation from some
shader technique.

There are many settings available here that can be experimented with. Some specific
examples of using vertex deformation is on a piece of cloth blowing in the wind or other
soft objects.

See also
Go to the Creating basic shapes with solids recipe in Chapter 3, Basic Level Layout to
learn to manipulate solids

Go to Chapter 4, Environment Creation to learn about the creation of a
basic material

Creating new material effects
Material effects in CryENGINE are defined as the way a surface material reacts to other
materials. For example, a metal material will react to bullet impacts differently (that is, by
generating sparks) than a grass material does (that is, by generating dirt or dust). Because
hardcoding these effects in C++ would require a huge amount of maintenance, these effects
are exposed through a number of small asset files.

Getting ready
It is important that the files involved in this recipe are explained.





Asset Creation

15�

The SurfaceTypes.xml, defined in <CryENGINE_root>/<game_folder>/Libs/
MaterialEffects/SurfaceTypes.xml, defines the physical properties of all the available
material types. It can be edited with any text editor. The MaterialEffects.xml, which
usually resides in<CryENGINE_root>/<game_folder>/Libs/MaterialEffects/
MaterialEffects.xml, defines the interaction of two materials as it defines what effect to
generate on an interactive event between two surface types. For example, it defines that when
a bullet collides with the soil surface, a dirt particle effect is spawned. This file must be read
and edited with Microsoft Excel. The Effect libraries, found in <CryENGINE_root>/<game_
folder>/Libs/MaterialEffects/FXLibs, contain the associated effects.

How to do it...
Let's create a material effect.

Material effect events are those events that occur on interactions between two surface types,
as defined in MaterialEffects.xml.

In this example, we will add a flow graph that is to be played as the event�

1. The first thing that you should do to make your own FG effect is to create a new .xml
in Game\Libs\MaterialEffects\FXLibs.

2. This file should be saved as newfx.xml and its content should be as follows:
<FXLib>
<Effect name="hit_mat_wood_custom" delay="0.05">
 <FlowGraph name="hit_effects_fg" maxdist="10"/>
</Effect>

In this example, I've set this event to fire a flowgraph called "hit_effects_fg" within a
maximum distance of 10 meters from the event's location.

Now that we have a new entry to access, we need to add it to the
MaterialEffects.xml. Open the MaterialEffects.xml in Excel.

Chapter 6

15�

Asset Creation

15�

3. Enter the new MFX event. The previous example enters the event into the "bullet"
row and the "mat_wood" column. You can see the way the material event is read by
entering the new event as the libraryname:eventname, so mine is newFX:hit_
mat_wood_custom.

4. Create a flow graph.

The previous example shakes the camera for the player.

The two nodes that are critical to be in the flow graph are MaterialFX:
HudStartFX and MaterialFX:HudendFX. If those two nodes are not
there, it simply won't work. The endFX node does not need to be
attached to anything if not required, but still must be present.

5. Once you have created the flow graph, go to File | Save As in the flow graph editor
and save it with the name you registered in the event earlier in the <FlowGraph
name="hit_effects_fg" maxdist="10"/> line of the event. For this example,
it is hit_effects_fg.

6. Now that it's all saved and the events are being called when the bullet impacts
the wood, start up sandbox and go shoot some wood and you'll see that the event
triggers and the flow graph is activated.

How it works...
The cross-reference between two surface types defines the type of event that will happen
on interaction. Surface types that are only called by code are required to only have rows and
must be added at the bottom, below the surface types defined in SurfaceTypes.xml.
(The exception is when it is needed to be used on materials through the Material Editor).

Chapter 6

15�

There's more...
There are many parameters that can be added and tweaked to the Material Effects system,
such as bullet pierceability through materials and creating all new surface types.

Creating new surface types
A surface type is defined by the XML element SurfaceType. Its attribute name is the one
that can be selected in the Sandbox Editor. Surface types defined here will appear as options
in the drop-down list of the Material Editor. The other attribute "type" is optional. It can be
used in other processes by game code. The physical parameters are defined by the
"Physics" element.

New surface types have to be added both as a row and as a column, and have to be kept in
the same order.

Physics block parameters
With the existence of surface effects, we can apply some advanced characteristics to
materials in the engine.

Some of the parameters that are added to the physics block are:

Pierceability is an integer from 0-15, with 0 being the least pierceable. For each ray, a
hit is pierceable if ray's pierceability is less than the material's pierceability
Friction defines a material's friction, friction is the average of contacting materials.
A recommended default is 0.8. Internally, it's clamped to 0.1 if it's below that

Ammo surface types
The surface type for ammunition is the attribute "name" of the XML element "ammo" in an
ammo file. Its value is required to be the same as that inserted in the MFX table.

See also
Go to Chapter 9, Game Logic to learn more about Game Logic and
FlowGraph scripting.

Creating image-based lighting
The concept of using image-based lighting brings many advantages but must be used
carefully. As such, it is beneficial to know about its properties and combine different
methods where useful.

IBL allows CryENGINE 3 to render very complex lighting situations; usually, this is done with an
infinitely distant environment map.







Asset Creation

1�0

Positive points:

High quality

Fast for many lights and even a complex environment is reflected

Energy preserving specular power

Negative points:

Works only well for local positions with distant emitters and reflection content

Static content only

There are two distinct ways to generating an environment map or cube map from CryENGINE.

In this recipe, we will use the entity environment probe, which is the most convenient method.

Getting ready
Open a level in Sandbox.

How to do it...
Let's set up our own image-based lighting.

1. Drag-and-drop the entity EnvironmentProbe from the MISC section of the
RollupBar.

2. Click on the entity property preview_cubemap to preview the cubemap.

As we haven't yet generated a cube map, it will be completely black.

3. Next, click the generate cube map button at the top of the entity.

The Engine will then automatically bake the cubemap into a texture that gets stored
in textures\cubemaps\levelname where level name is the name of the level
that is opened when the cubemap is generated.

4. You will also notice that the preview sphere now has the cubemap applied to it.

5. Set the env Probe to active and adjust the radius parameter to observe the projected
cube map reaction.

How it works...
Image-based lighting is a rendering technique where complex lighting is stored in an
environment map, which is projected onto the scene. In simple words, a light probe or
environment map is just an image on a sphere.











Chapter 6

1�1

As this object acts as a light projecting the cubemap onto any objects within its radius, it
allows the artist to create realistic environment maps based on the actual environment the
object is in, rather than using a generic environment map.

Even a single global light probe helps to improve the lighting, as the classical
flat ambient is replaced by something that is direction-dependent and shows
some specular and material behavior.

There's more...
There are many properties further available in the environment probe as well as a second way
to create cubemaps.

Generating all Cubemaps
There is another function in the environment probe entity, which is the ability to bake all
cubemaps for all light probes in a particular level.

This is quite useful for updating the environment maps throughout the entire level
very quickly.

Creating a CubeMap with Material Editor
To create a local cubemap with the Material Editor, follow these steps:

1. First, create and select the object that will serve as the center of the camera that will
record the cubemap. In this example, the palette_box brush is used.

2. With the object selected, open the Material Editor and click Get Material From
Selection.

3. With the object's material selected, click Generate Cubemap for the selected object.

4. Enter a name for the cubemap, and click Save.

5. Enter the resolution of the cubemap. 256 is the default resolution.

See also
To get the best out of image-based lighting it is best to have a level. Go to Chapter 3,
Basic Level Layout to learn to create your environments



�
Characters and

Animation

In this chapter, we will cover:

Creating skinned characters for the CryENGINE

Ragdoll and physics for characters

Creating animation for your character

Previewing animations and characters in Sandbox

Creating only upper body animations

Creating locomotion animations

Animating rigid body geometry data

Introduction
In this chapter, we will explore the creation of animated characters for the CryENGINE. We will
also extensively cover the creation of different animations for a variety of asset types.

Animated characters are integral to any game as any time you want to have realistic-looking
humans, aliens, or anything of that sort you need to be able to skin the asset's mesh to a
skeleton. Once the mesh has been skinned then it can be exported to the engine as a .CHR.
There is a second format, used mostly when dealing with vehicles and rigid body assets,
which is called .CGA.

A character is a combination of geometry data that is attached to a skeletal hierarchy.
Examples include a human body, a shark, an alien, a horse, or a rope. In this chapter, we will
mainly be dealing with humans; however, keep in mind that most of these recipes can be
applied to other types of assets.















Characters and Animation

1�4

Throughout this chapter, we will be dealing with the SDK sample files shipped with the
CryENGINE3 SDK. With that said, however, there is still extensive information throughout this
chapter on creating a completely new character from start to finish and thus it can be used as
a reference when creating a custom character.

Creating skinned characters for the
CryENGINE

The CryENGINE has a robust character and animation system.

It is however important to realize that, for the character creation process to go smoothly, you
should follow the recommended workflow put forth in this first recipe for the creation and
subsequent animation of skinned characters.

Getting ready
Locate the character assets that are shipped with the CryENGINE SDK.

In most cases, a character subfolder is created within your particular game's object folder.

In the SDK, the default character is located in Game\objects\Characters\neutral_male.

When creating character assets for the CryENGINE, you will typically save them to two or three
different .Max files. The first file will contain the main character; the second scene contains
the first LOD of the character and its ragdoll physics mesh. The third file is optional, as it
usually contains just the head of the character. The head is separated as it makes it easier to
edit independently of the rest of the character.

Before we begin, some important things to note about the geometry used for characters for
the CryENGINE are:

Characters must be facing forward on the Y+ axis in 3ds Max

The skinned geometry must have no transformations applied and its pivot should be
set to origin, or 0,0,0

As there are many tutorials available for character modeling and texturing, we will not go into
deep detail of the actual modeling and texturing process. Rather, we will learn to manipulate
the SDK character and explore how we can use this to build our own character.





Chapter 7

1�5

How tttooo dddooo iiittt.........
Let's use the sample skeleton to learn how to create our own character:

1. Locate the Max file named SDK_character_male.max, which is stored under
Game\objects\Characters\neutral_male.

You should now be viewing the neutral male character scene, as shown in the
following screenshot:

2. Let's explore the nodes within the Max file�

The deforming skeleton is a typical starting point for all characters as it is
responsible for many tasks

It deforms the render meshes of the character based on skinning
information

The actual geometry of the bones in this skeleton will be used for hit
detection and physics for an active or alive character

Materials applied to the deforming skeleton are also used for hit detection
and can be used to apply physical impulses or to read where the character
has been hit









Characters and Animation

1��

3. Open the select by name list in 3ds Max by pressing the shortcut H or by clicking the
select by name icon.

4. All the nodes under and including Bip01 are what comprise the Live
Deforming Skeleton.

It is strongly recommended that for human characters you
retain the same hierarchy as the example scene. New bones
can be added but they should not interfere with the 3ds max
biped's default hierarchy as there are additional nodes used
for automatic foot plant and ground alignment.

5. At this point, if you are working on a custom character, you will want to import your
custom mesh into the neutral_male.max scene.

When creating your own character, you do not necessarily
need to match your render mesh to the SDK skeleton.
However, keep in mind that if you do not use the neutral_
male Live Skeleton, it will mean that your custom character
will not be able to use the existing animation set that ships
with the SDK.
To achieve high fidelity animations, current generation
games can include hundreds of individual animations, so to
get a character in game quickly it's best to use the pre-built
skeleton.

Chapter 7

1��

6. The second skeleton that must be in the scene when you create your character is the
Live Physics Skeleton, also called the Live Phys Skeleton.

7. The best way to understand the Live Phys Skeleton is to think about it in terms of a
set of constraints to each bone in the Live Skeleton. When a bone is present in this
Phys skeleton, it signals its counterpart in the Deforming Skeleton that it should be
physical in the world when the character is alive. The Phys skeleton for your character
also stores physical properties for its counterpart which are stored in the phys
skeleton bone's IK properties, as seen in the following screenshot:

Characters and Animation

1��

Now that we understand the function of both the skeletons in the main character max file, we
will discuss the setup of different portions of the character. As you create the mesh, you will
find it significantly easier to skin and animate your character if it properly matches the existing
skeleton. Another important consideration is the density of vertices at key areas, such as the
knees and elbows. Spending a few extra vertices in these locations will greatly increase the
quality of the deformation when animated.

8. Always make sure that, whether you use the SDK skeleton or your own custom
skeleton, the model matches the joints in the skeleton.

9. Having created geometry for the character, you will have to skin this geometry to the
skeleton for animation.

The Physique and CrySkin modifiers can be used in the place
of the skin modifier.

10. This can be done by applying the 3ds max modifier skin to your geometry and
by adding the Live Skeleton bones that should affect that character into the
skin modifier.

Chapter 7

1��

11. When applying the skin modifier, ensure that your skeleton is in the bind or
neutral pose.

12. Before exporting your character mesh, there is a technique that can be used to make
it very easy to modify certain parts of the character in the engine directly.

13. This can be achieved by exporting a skeleton_character, which is simply a single
triangle usually hidden in the pelvis or set to a no draw material skinned to the entire
live skeleton. This will allow you to export a blank skeleton onto which you can add
your attachments using the Character Editor.

14. If not already done, add the skeleton_character object to the export nodes list in
the CryENGINE exporter.

15. You will notice that when adding a skinned object to the export nodes list, it will, by
default, automatically add the required skeleton to the export.

The exporter automatically adds all children bones of the
listed skeleton node.

16. As we will be exporting this file as a character, the format we are required to use is
the .chr format.

When managing multiple character meshes in a single scene, it is important to use
the export file per node parameter in the export settings. This will use the name of
the object in 3ds max as the name of the .chr created. The added benefit is a one-
click export of any number of character meshes.

17. Let's now add the remaining characters in this scene to the export list.When you are
done, the CryENGINE exporter should appear as shown in the following screenshot:

Characters and Animation

1�0

18. Once you have added the remaining characters to the scene, you can now export the
render meshes and the skeleton!

19. To do this, click the export nodes button.

(Good workflow dictates that we test our export in game.)

20. Open Sandbox. Click open View | Character Editor.

21. Using the File | Open dialog in the character editor, you can now open the exported
.chr files.

22. As we want to assemble our character into a single manageable file, we can now
create a .cdf (Character Definition File) using the character editor.

23. To do this, click on File | Open and open the skeleton_character.chr file.
You can preview the skeleton by adjusting the debug options at the bottom of the
character editor.

24. Let's now begin to add the attachments that will make up our character:

In the attachment properties select skin attachment.

Then under the attachments window click new.

Name the new attachment shirt.







Chapter 7

1�1

Select the browse button beside the object string and browse to the shirt.
chr we exported earlier.

Leave the material field blank for now as it takes the default material
applied to the attachment model.

To view the attachments on the character click apply.

You will see that the shirt is now attached to the skeleton and if an animation
is played, the shirt reacts to the parent skeleton appropriately.

25. Add the remaining pieces of the character we exported earlier.

26. Now that we have assembled this character, we need to save it for later use in engine.

To do this, navigate to File and click Save As and save the file as .cdf.
You can name it as you see fit for this example; I will save it as
cookbook_character.cdf.

This can now be used later as the player model, AI friendly, enemy characters, and animated
cinematic characters!

How it wwwooorrrkkksss.........
Characters allow us to use complex animation and locomotion on characters and thus
be able to create working and realistic characters imperative when creating a game.
It can be used as the player's representative model in game, in cut scenes, and finally as
artificial intelligence.

The attachment system is one of the principle reasons behind the Character Editor. Current
generation games can have upto 20 to 30 different character-models and thus, using
attachments is one way to avoid repeatedly displaying the same character over and over again
to the player. The attachments system also allows designers and artists to give the character
a unique look in a very intuitive and easy way.

Materials and characters
When working with an example character, you will have noticed that the bones of the skeleton
were colored and thus had a material applied from within 3ds.











Characters and Animation

1�2

When creating materials for characters, this is an option available to you as it can be
used later on via code or other means to identify areas where characters have been hit.
Sometimes, characters are simple enough that the render materials can be added in addition
to the bone materials in one larger multi subobject material, or they can be separated as in
the following example:

You can see that the sdk_character.mtl contains sub-materials for each physical bone as
well as a no_draw material for the simple triangle used in the skeleton_character.

LOD (Level of Detail)
A character LOD (Level of Detail) is in geometry with a lower polygonal resolution that will be
faded automatically in-between based on the character's distance from the camera in the
game engine.

To create LODs, you must copy the original character mesh and then reduce its triangle count,
which can be done manually, or for the sake of speed you can use automated modifiers in
max such as Multires.

Once the polygon count has been lowered, the fastest way to skin the LOD (similar to the main
character) is to use the skin wrap modifier in 3ds max and use the original mesh and skinned
mesh as the target. You can then convert this skin wrap modifier to a regular skin modifier
and then export the newly created LOD.

LOD objects must follow the _LODn naming convention where n is the number of the LOD.

Chapter 7

1�3

Bone Attachments
When using the character editor in sandbox, you can add other types of attachments to
characters other than skin attachments. One such attachment is the bone attachment.
Adding bone attachments is a way to have any model, be it a .cgf, .cga, and other
.chrs, constrained to a single bone within your character. This can be useful for rigid body
attachments such as weapons and props such as sunglasses or helmets. When applying
bone attachments, you may sometimes have to align the bone attachment. When set, this
aligns the pivot of the geometry with the bone. In other words, the rotation of the joint and the
rotation of the attachment will remain identical throughout animations.

See also
Use your character in interesting ways by going to the Hangman on a rope recipe
mentioned in Chapter 11, Fun Physics

Carry on to the next section to learn how to set up the ragdoll reaction for characters

Ragdoll and physics for characters
In CryENGINE3, characters have realistic physics applied to them. When a character is
reacting only physically to the world and not playing a specific animation, we typically call them
ragdolls. Ragdolls are usually used to make every death of an AI character look unique and
exciting; this can be very rewarding and fun for the player!

Working with and editing ragdolls can be a lot of fun. This recipe will take you through the
setup and theory of using ragdolls in CryENGINE3.

Getting ready
As mentioned previously, characters are stored in multiple Max files.

In the SDK, the default character is located in Game\objects\Characters\neutral_
male.

In this case, we are interested in the SDK_character_male_LOD1.max file.





Characters and Animation

1�4

How to do it...
Let's begin by getting accustomed with the sample ragdoll file�

1. Open the SDK_character_male_LOD1.max file.

You will notice similarities with the main character file mentioned in
the previous recipes. The deforming skeleton in this scene is used as
the dead physical skeleton of the character. Because this skeleton will
react physically with many objects in the world, it is important that it
be made from simple primitives, such as capsules, boxes, or spheres.
The second skeleton in the scene, the Phys skeleton, acts identically
to the main character Phys skeleton, except that it acts as the set of
switches and constraints for only the ragdoll's deforming skeleton. If
you are creating a custom character, creating this _LOD1 file is not
complicated.
A very good technique to create the geometry for the ragdoll's
deforming skeleton is to align some primitives created in max to the
existing live skeleton. Using the editpoly modifier on the bones, you
can then attach the new primitive geometry to your bone and remove
the old bone geometry.

2. Having set up the geometry for physics and this ragdoll, we can now save the file with
the _LOD1 suffix.

Chapter 7

1�5

3. Next, you can create the first LOD of your render mesh character attachments
manually or by using a more automated process such as multires.

4. Ensure that the objects in max also have the _LOD1 suffix as we will be using export
file per node when we export these characters.

5. Once you are ready, click the export nodes button. There are really two different ways
to test the ragdoll physics of a character in the CryENGINE.

6. Open Sandbox and open any level.

7. Now, place an AI entity into the world and ensure that its model parameter is set to
either your custom model or, if you are using the SDK skeleton, ensure it is set to
Objects/Characters/neutral_male/sdk_character_male_v2.cdf.

8. Next, as we are testing the physics enter the following console variable in the console:
p_draw_helpers = 1

9. Now you can see the live deforming skeleton rendered as a pink geometry:

10. You should now enter into game mode (control G) and shoot the character until his
health reaches 0.

Characters and Animation

1��

11. Once the character's health runs out, the entity will switch to ragdoll.

12. Another way you can quickly kill the AI entity is to right-click the entity and to select
the kill event under select events.

13. You will see that, when the character is killed, all the bones react according to the IK
settings in the Phys skeleton of the _LOD1.max file.

14. The final and – in my opinion – most effective way to test the ragdoll of a particular
character is to use a dead body entity.

15. You can find this entity under the Entity | Physics tab.

16. Drag-and-drop this entity into the level and set the model path to your custom
character or to the sample character. The model path is as follows: Objects/
Characters/neutral_male/sdk_character_male_v2.cdf.

17. By default, resting is set to true on the dead body; ensure that this is set to false to
have the ragdoll simulate.

18. You can enable the simulation by pressing the AI/Physics button or by entering
game mode.

Chapter 7

1��

How it works...
When a character is killed, the physics system takes over the character as we do not need to
play a certain death animation with an effective physics system. The character's skeleton then
takes the _LOD1 live deforming skeleton's geometry and simulates the bones according to the
IK settings within _LOD1 Phys skeleton.

There's more...
You may want to know how to adjust the physical characteristics of the ragdoll further or how
to save the physical state, or pose, of a ragdoll character.

IK limits
The IK limits applied to the Phys skeleton are the key to a good looking ragdoll simulation!
These limits are applied as IK rotational limits from the bone in the dead body Phys skeleton.

Editing this IK information can take a good deal of testing. To adjust the IK limits for a bone
in the phys skeleton, you can select it in 3ds max and go to the hierarchy tab in the rollout
bar. Under the IK setting, you will be able to access all the rotational constraints for the
Phys skeleton.

IK Y angle limits should lie in (-90°,90°) range.

ParentFrames
ParentFrames is a technique that can be used to allow joints to rotate beyond the
(-90°, 90°) range. To create a parent frame and an additional parent object, the bone
must be created.

If the joint needs to rotate beyond the (-90°, 90°) IK Y limit, an additional parent node for the
bone can be created, and IK rotational limits will be relative to it. The objects must have the
naming convention + ' Phys ParentFrame'.

Characters and Animation

1��

An example setup can be seen in the SDK sample character .max file�

When the angle of a particular bone varies greatly from its immediate child, it is
recommended to use a ParentFrame object.

Dead body entity settings
Dead body entities can be used in levels as well as for testing character physics. Typically,
workflow is to create the entity with the resting set to false and enable AI�Physics to simulate
it in the editor. Then, the physical state can be saved by using the Save State button in the
entity parameters.

See also
A ragdoll is impossible without having previously created a character. Refer to the
Creating skinned characters for the CryENGINE recipe in this chapter

To learn to create animation for your character, refer to the following Creating
animation for your character recipe

Creating animation for your character
Characters wouldn't be very interesting without animations! In this recipe, we will cover
the basic task of animating a character and exporting that animation to be played later
in Sandbox.





Chapter 7

1��

Getting ready
There are four important steps involved in preparing and animating your character from
CryENGINE 3:

Creating a character and export a .chr file

Entering the character's information into the .cba file

Animating the character and export a .caf file

Adding the exported .caf file to the character's .chrparams file

Use the SDK sample asset character to start this recipe, as the character creation process
has already been discussed in previous sections.

How to do it...
First, let's open the character in the character editor:

1. Open the character editor and open the Objects/Characters/neutral_male/
sdk_character_male_v2.cdf. It is important to verify that your character is
working in the engine before we can begin with animation.

2. We will now open the animations.cba file, which can be opened in any text editor.
You will find this file in the game/animations folder.

3. In the CryENGINE SDK, the first entry is the sample character. You will notice that
comments already exist to explain each of the parameters.

4. If you are creating a custom character, then the best practice is to copy the
definition for the sample character and set the Model File path, Animation path,
and Database path.

 <AnimationDefinition>
 <!--the reference model-->
 <Model File="/../Objects/Characters/neutral_male/skeleton_
character.chr"/>
 <!--the path with ALL animation we can use on this model-->
 <Animation Path="human_male"/>
 <!--for all animations use compression level 1-->
 <COMPRESSION value="2"/>
 <RotEpsilon value="0.0000001" />
 <PosEpsilon value="0.0000001" />
 <Database Path="human_male/human_male.dba"/>
 <!--for all animations need to detect footplants-->
 <FOOTPLANTS value="NO"/>
 <!--we apply the Locomotion_Locator modification just on BIP-
files. Aliens, vehicles and weapons don't need it. -->
 <LOCOMOTION_LOCATOR value="YES"/>









Characters and Animation

1�0

 <!--we apply different modifications to the weapons . Human
and Aliens don't need it. -->
 <!--a list of animation that need special handling-->

 <SpecialAnimsList>

 <!-- AIMPOSES COMMON -->
 <Animation APath="Aim" footplants="NO" compression="0"
autocompression="0" SkipSaveToDatabase="1" />
 <Animation APath="vehicle" footplants="NO"/>

 </SpecialAnimsList>
 </AnimationDefinition>

Having verified that this character is already present in the .cba, we can begin animating.
Should you be making a custom character, ensure your character is registered in the .cba
before animation begins. Let's create a simple arm waving animation:

1. To animate the character open the sample character Max file.

2. Make sure that biped is not in figure mode as you will not be able to keyframe
any bones.

3. As this is a 3ds max biped, you can now apply motion capture data to the live
deforming skeleton.

4. Set the animation mode in 3ds to Auto Key and move the right-hand bone into
a wave position. You will notice that once you move the bone, a keyframe is
automatically created.

5. You may have to rotate the upper and lower arms to get a more realistic pose.

6. Once you are happy with the position move the time slider to the tenth frame and set
a different pose.

7. Finally, as we want this animation to loop, we must set the last keyframe of our
animation to the same position as the first keyframe.

8. This can be done easily by selecting all the bones you want to animate by using shift
+ click on the keyframe in the timeline and dragging the copied keyframe to the final
frame.

9. In this example, copy the first keyframe to the twentieth frame.

10. As we will only be exporting a single animation, we can set the time configuration in
max to only show frames from 0 to 20.

Chapter 7

1�1

The exporter will automatically export the currently displayed
frames in the animation time line, if not set otherwise.

11. To export the animation, open the CryENGINE exporters in the tools tab and ensure
that the skeleton_character has been added to the export nodes list.

12. As discussed earlier, this will automatically add the parent node of the skeleton to the
export bones list.

13. Clicking the export bones button will open the save dialog box, which allows you to
save the animation as a .caf file.

14. Save our waving animation under the defined path in the animations.cba for the
character. In this case, save it as cookbook_wave.caf under the Animations/
human_male folder.

15. There is one final step that we must complete before being able to view our character
animation in Sandbox's character editor. We must add this new animation to the
characters animation list file .chrparams.

16. Open the .chrparams file in any text editor and locate the animation list. It is
defined by <AnimationList>:
<AnimationList>
 <Animation name="#filepath" path="animations\human_male"/>
 <Animation name="$AnimEventDatabase" path="animations\human_
male\human_male.animevents"/>

Characters and Animation

1�2

 <Comment value="$Include = objects\characters\human\
GlobalHuman.chrparams"/>
Insert a new entry for our animation below the $Include line as
below
<AnimationList>
 <Animation name="#filepath" path="animations\human_male"/>
 <Animation name="$AnimEventDatabase" path="animations\human_
male\human_male.animevents"/>
 <Comment value="$Include = objects\characters\human\
GlobalHuman.chrparams"/>

<Animation name="Custom_cookbook_wave"path="cookbook_wave.caf"

17. Having now added an entry in the .chrparams file, open Sandbox and then open
the character editor.

18. Using File | open, open the character Objects/Characters/neutral_male/
sdk_character_male_v2.cdf.

19. And notice in the left-hand side of the character editor that you can now browse into
the newly created custom folder where you will see the cookbook_wave animation.

20. Click on it to preview the animation.

21. You have now created and exported your animation to the CryENGINE!

Chapter 7

1�3

How it works...
When a character is loaded by the engine, it checks for a .chrparams file that defines a list
of valid animations for the particular character. These animations then become accessible
through code, cut scenes, and the character editor to be played back.

In this example, we dealt with .caf animation data that is created by exporting the
animation range from 3ds. Upon export the Resource Compiler is invoked and a certain
amount of compression and optimization is applied to the animation to make it ready for
real time playback.

There's more...
You may want more information on the compression of animations or how to expedite the
character animation process by wildcarding animation names within the .chrparams file.

Changing the animations compression
You may have animations that are jerky or jittering. This can be caused by the original
animation asset and in some cases, it can be caused by aggressive compression applied
to the animation.cba.

The value to control compression is seen in a character's definition in the .cba as the line:
<COMPRESSION value="2"/>.

Change this value to a lower number to compress the animation less aggressively.

.chrparams file Wildcard Mapping
Wildcarding the animation names within the .chrparams file can be carried out as follows�

Assigning each animation definition in the .chrparams file, line-by-line, can take an
unacceptable amount of time and can lead to very big .chrparams files.

Wildcard Mapping uses the asterisk (*) to represent the filename. Using the
asterisk in the in-game name will replace it with the part of the actual filename
that is wildcarded.

For example:

<Animation name="coop_*" path="coop\coop_*.caf"/>.

The previous line will load all animation from the folder coop that starts with the
word coop and has the extension .caf.

These animations will automatically be assigned an in-game name that starts with
coop_ and then follows the part of the filename that comes after coop (which will be
removed from the name).









Characters and Animation

1�4

A filename kickroundhouse.caf would be mapped to coop_roundhouse.caf.

It is important to ensure that these folders are kept clean of old and unused assets,
so as not to waste extra memory.

One important advantage of using wildcards is that, once a folder is mapped then
new animations can be quickly added to that folder without the need to add an
animation definition in the .chrparams file each time.

It is only necessary when the in-game name that is supposed to be
assigned to the animation is substantially different than the filename
of the .caf. Wildcard Mapping can even be used on an entire folder.

Animobject entity
A useful entity for testing animations is the animobject entity found under Entities | physics |
animobject.

Once placed in a level, you can assign a model and then enter the string of the in-game
animation name.

A good technique is to add this animobject to a flow graph and assign the animation to it using
the Animation:PlayAnimation flow graph node.

See also
To learn how to create a character refer to the Creating skinned characters for the
CryENGINE recipe earlier in this chapter

To learn more on how to preview animation within the character editor, go to the next
recipe in this chapter











Chapter 7

1�5

Previewing aaannniiimmmaaatttiiiooonnnsss aaannnddd ccchhhaaarrraaacccttteeerrrsss fffooorrr
Sandbox

The character editor is a very powerful tool and is one of the numerous subsystems within
sandbox. We have already used some of its basic features, and now it's time to explore a few
of the advanced features and their uses as they relate to animated characters.

Getting ready
Open Sandbox and also the character editor. Then open the SDK sample character Objects/
Characters/neutral_male/sdk_character_male_v2.cdf.

How tttooo dddooo iiittt.........
As we saw in the previous chapter, you can easily play animations on characters through the
character editor:

1. To play an animation for a currently loaded model, simply browse to the animation
name and click it and the character will immediately start the animation.

2. For this example, start the animation _Relaxed_Run under the _Relaxed folder.

Characters and Animation

1��

3. You will notice the LMG icon located beside the animation name. These will be
discussed later. It is, however, important to know that LMGs are sets of animations
which are procedurally blended between.

4. Ensure that Animation Driven Motion is set to true.

5. Adjust the first slider in the blend space control to -1.

6. You will notice that the character slows down and blends naturally between a fast and
slow run. The other sliders control the rotation and the incline.

7. Reset all the sliders to 0.
8. Now, we will play an animation in a different layer on the same character. This can be

useful for upper body-only animations, which we will create in a recipe.

9. While the character is playing the _Relaxed_Run LMG animation, change the Layer
property to Secondary.1.

10. Next, select the animation under the throw folder throw_leftarm_UB_01.
11. You will see that the character begins to play both animations. The second animation

is being played on the second layer in a layered fashion.

Layer zero is the primary-layer. Usually it contains the base full body
animation. All animation in layer zero must be set to full body animations.

Chapter 7

1��

How it works...
The animation system in the CryENGINE is a combination of a variety of existing skeleton
animation technologies, including playback and blending of animation data, as well as IK-
based pose-modifications. Procedural algorithms such as CCD-IK, analytic IK, example-based
IK, or physical simulations are sometimes used to augment pre-authored animations.

The Character Editor allows character, artists, and animators to see all of these
systems interacting with their content and thus, they are able to modify the content
quickly and preview it to ensure its quality.

We explored the layer system which allows us to apply an animation to only a few
selected bones, rather than to the whole skeleton.

The Layer System can support up to 16 virtual layers. Layered Animations are all
applied at the same time onto a character.

This system was designed mainly for mechanical objects (such as weapons, vehicles,
and so on). However, in some cases it can be used on humans as well. Human
animations in a game often consist of a base animation (standing, walking, and
running) and a number of modified derivatives (looking around, aiming with a gun,
and reloading a gun).

Combining animations is equally useful for animating characters that have a large
variety of equipment or weapons, while reusing basic cycles such as walks and runs.

There's more...
You will find it useful to search and filter animations as well as know the different types of
animation assets. You can find out more about these topics in the following sections.

Animation dddrrriiivvveeennn mmmoootttiiiooonnn
This flag is set per character instance. Set this flag which will then extract the real movement
(translation and rotation per frame) of the character from the locomotion animation file and
pass this information to the game-code to move the character in the world. This feature
requires specifically authored motion-assets with a locomotion locator. A locomotionlocator
describes the logical movement of the motionclip in the simplest way.

Searching and filtering animations











Characters and Animation

1��

Using the filter in the animation list is a good technique to quickly find particular animations.
There is also a history window, which you can use to quickly move between recently
played animations.

Types of animation assets
Animation assets will be tagged with a certain icon depending on the type of content.

See also
It is important that you have animations to work with. Refer to the Creating animation
for your character recipe mentioned earlier in this chapter

To create upper body animations refer to the next recipe in this chapter

Creating uppppppeeerrr bbbooodddyyy ooonnnlllyyy aaannniiimmmaaatttiiiooonnnsss
The easiest way to create assets for partial-body animation is to remove the animation
channels for certain bones in the DCC App. That means that you have to create a set of
special animations that influence just a limited set of bones and not the entire skeleton.

Getting ready
To complete this recipe, you must finish the Creating animation for your character recipe
mentioned in the earlier sections of this chapter.

How to do it...
Let's create an upper body only animation:

Open up the animation cookbook_wave animation.
When we last exported this animation, we exported it as a full body animation.
Exporting an upper body animation is much the same as exporting a full body
animation. You need to select a root of a hierarchy in the skeleton and add that
to the Export Bones list manually.









Chapter 7

1��

Select the Bip01 Spine bone and then click Clear List in the Bone Export options
and then Add Selected. This will add the bone Bip01 Spine to the node list.

You are now ready to export the animation from the Bip01 Spine bone and all of its children
in the hierarchy.

1. Click the export bones button and save the animation as
cookbook_wave_upperbody.caf.

2. Start the animation _Relaxed_Run under the _Relaxed folder in the
character editor.

3. Change the layer to the secondary layer and play the newly exported upper body
animation on the second layer.



Characters and Animation

1�0

4. This will begin to play the animation using the tracks that were exported from the
spine down through its hierarchy.

How iiittt wwwooorrrkkksss.........
You should now see the combined movement. Notice the legs moving in the same way as the
full body animation, with the upper body completely overwritten by the second animation.

There's more...
You may also want to know how additive animations work; these are similar to upper body
animations and can be used to play facial animation.

Additive aaannniiimmmaaatttiiiooonnnsss
Additive animations are relative animations, which mean they don't overwrite the animation
on the original bones, but instead add motion to them.

This means that an additive animation will preserve the underlying animation and style, which
is great for adding poses and animations.

This can reduce the overall asset count greatly and add a lot of variation to the animations.

Possible uses of additives could be breathing, looking around, flinching, posture change, and
so on.

Using aaaddddddiiitttiiivvveeesss
An additive can be started like a regular animation, as the engine will automatically recognize
it as an additive animation after it has been processed by the resource compiler.

See also
To learn how to create locomotion animations such as the one used in the previous
recipe, refer to the Creating locomotion animations recipe in this chapter

You will likely need to know how to create an animation for your character and the
principles behind it for this recipe. Please refer to the Creating animation for your
character recipe mentioned earlier in this chapter





Chapter 7

1�1

Creating locomotion animations
Locomotion animations are absolutely essential for AI and player actions and animations.

Authoring these assets can be easy if a few principles are understood regarding a very
important rig element called the Locator_Locomotion.

The locomotion locator or Locator_Locomotion as the node is called, is used in the
engine to describe the logical movement and orientation of the animation. This node needs to
be added to motions which translate in a non uniform way, such as a start or stop transition,
which have peaks and troughs in acceleration.

Getting ready
The skeleton must contain the bone Locator_Locomotion if it is going be used in
a LMG group later

Open the file SDK_character_male_foranimation.max

How to do it...
Let's learn how to create the structure needed to support locomotion animations:

1. When using a biped, the easiest way to add the ability to use locomotion is to turn on
figure mode and create a prop named Locator_Locomotion.

2. In this way, the animation for the locator can be saved inside the biped file, making it
easier for exporting.





Characters and Animation

1�2

3. Simply access figure mode, go to the structure menu of biped, and check the box
Props:1:

4. Make sure the bone faces the positive Y axis in its local coordinate system. We will
now begin animating the locator.

Chapter 7

1�3

5. Start by setting a key for the prop, then navigate to the prop menu under the Key
Info group of the biped motion menu and set both Position Space and Rotation
Space to world. This will allow you to animate the node independent of the root
of the character.

6. When creating an animation in which the character has to turn quickly as in an idle to
run transition, the locator needs to be a projection of the Bip01 on the ground, yet it
must travel in a straight line on one axis. Its height must be set to 0.

7. Keep in mind that the locator should be moving in a straight line in the direction with
no deviation to either side. However, the actual translation of the locator in its forward
moving direction should follow the Bip01 as closely as possible.

How iiittt wwwooorrrkkksss.........
Properly setting up locomotion animations allows the use of the procedural blend space
system within CryENGINE. This system uses LMGs or locomotion groups.

An LMG is an XML file containing a blend-code and a list of animation names in a fixed order�

<LocomotionGroup>
 <BLENDTYPE type="STF2" />
 <CAPS code="RUN" />

 <ExampleList>
 <Example Position=" 0, 1, 0" AName="combat_run_rifle_forward_fast"
/>
 <Example Position="-1, 0, 0" AName="combat_run_rifle_left_fast" />
 <Example Position=" 0,-1, 0" AName="combat_run_rifle_back_fast" />
 <Example Position=" 1, 0, 0" AName="combat_run_rifle_right_fast"
/>

Characters and Animation

1�4

 <Example Position=" 0, 1, 0" AName="combat_run_rifle_forward_slow"
/>
 <Example Position="-1, 0, 0" AName="combat_run_rifle_left_slow" />
 <Example Position=" 0,-1, 0" AName="combat_run_rifle_back_slow" />
 <Example Position=" 1, 0, 0" AName="combat_run_rifle_right_slow"
/>
 </ExampleList>

</LocomotionGroup>

The blend-code is used at loading time to identify the type of LMG, to extract the features out
of the root-motion, to verify the assets, and to compute the blend-values at runtime. The game
simply specifies a parameter and the animation system generates the desired motion. The
motion features are extracted directly out of the clips.

The idea behind locomotion groups is to collect multiple variations of a motion-type and
arrange them in a spatial data-structure, which in CryENGINE is called blendspace. At
runtime, it then applies interpolation and extrapolation techniques to create an infinite
number of motions between and around these example motions.

Animating human figures can be very complex. However, it is possible to describe many
actions with a relatively small number of motion-parameters. For example, a locomotion
cycle might be characterized by the speed, body-orientation, travel-direction, turn-radius,
and slope-angle. Such kinematic and physical properties can be combined with abstract
properties like mood or style.

While a programmer is not required to use existing LMG blend-codes, programmers
are needed for their creation. Fortunately, LMG blend-codes already exist for most
locomotion purposes.

There's more...
Having created some basic locomotion, you may want to know some specifics when creating
swimming animations or locomotion loops.

Swimming and vehicle transitions
For swimming transitions or vehicle transitions the locator can be a straight blend between
the ground position of 0, 0, z and end at the Bip01 location and forward-looking direction of
the character.

Locomotion loops
For loops, only setting keys for the start and end of the animation is necessary, if you wish to
add a locator to them. They are technically not needed, but for batch processing it keeps the
database clean.

Chapter 7

1�5

Idle to move and 1�0 degree rotational assets
The orientation of the locator in an idle mode to move transition should remain looking
forward until frame 10.

When the orientation changes (left, right, left reverse, or right reverse) this should occur in the
following 6 frames, so the new orientation is complete at frame 16.

When changing the orientation 180 degrees for reverse transitions, make sure you rotate the
locator 0.1 degrees back to its original orientation to avoid flipping of the character.

See also
You must know how to animate a character to be able to create locomotion
animations. Refer to the Animating your character in CryENGINE recipe mentioned in
the earlier sections of this chapter

If you haven't yet created a character then refer to the Creating a skinned mesh
recipe mentioned in the earlier sections of this chapter

Animating rigid body geometry data
In the CryENGINE, not all animation needs to be driven by bones. The engine supports
animating hard body geometry, which can be far more optimal for certain assets and in
certain situations. You might want to animate complex scenes such as the destruction of an
object in 3ds Max and then export that to the engine, or you might simply want to open the
door on a vehicle—all this can be done using rigid body geometry animation.

Getting ready
Animated hard body geometry data only supports directly linked objects and does not support
skeletal-based animation. It is composed of two file types�

.cga (Crytek Geometry Animation)

.anm (Additonal Animation)

How to do it...
Let's creates some rigid body animation:

1. In 3ds, create two simple spheres primitives in the scene.

2. Convert the primitives to edit polys.

3. As we will be exporting a .anm file for a .cga geometry, we must convert all the
objects that will be animated to the Tension Continuity and Bias controller or TCB.









Characters and Animation

1��

4. Change the controller types for position and rotation to TCB under the
3ds Motion tab.

5. Now, create a very simple animation for the objects in the scene. Bouncing the
spheres is a simple animation to make.

6. Next, we must export the geometry before exporting the animation for it.

7. Select all the objects and add them to the Object Export list by clicking add selected.

8. For this example, make sure export file per node is set to false as we would like to
have both the geometric objects in a single .cga file.

9. Next, make sure that the cga file type is selected in the Export To drop-down box.

10. Save the max file as cookbook_bouncing_balls.max under the
game/objects/bouncingballs folder.

11. Press the Export Nodes button. This will export the objects to the same folder that
the source file is located.

12. The file will assume the source file's name unless you check Custom Filename. This
will allow you to type in a unique name.

13. Next, for good workflow, we should examine our newly created .cga in the
character editor.

14. Open the CryENGINE Sandbox and the character editor.

15. Click File | Open and navigate to the folder you exported your .cga file to.

16. Each CGA file contains a default animation, and it is the length of the timeline that
was active when the .cga file is exported.

Chapter 7

1��

17. We now have an existing CGA file that we want to add with a selectable animation to
create a second animation for the .cga.

18. When the animation is complete, navigate to the Object Export section of the
exporter and set Custom Filename to true and set a filename that uses the name of
the .cga object you are adding it to, as a prefix in the name.

19. As an example, the test .cga file contains the object you are animating, in addition to
the default animation. In this case, you need to name your .anm file test_[n].anm,
where n questions the name of the additional animation.

20. Press the Export Nodes button.

21. The .anm file must be saved to the same folder as the .cga; otherwise, you will not
be able to preview it in the character editor.

How it works...
.anm files are the simplest animation that you can export to the CryENGINE. They do not
require as much processing power as a skinned mesh and can be animated fairly easily.
These types of animations can be used on a variety of environmental objects that require
some moving parts. The .anm file format is also the principal animation format for any
vehicle animation.

There's more...
You may want to know how to bake physically simulated animations into .cga animations and
how to use an animobject entity.

Pre-baked physics with .CGA objects
To pre-bake physical destruction, you can use .cga objects with baked .anm
animations.
This can be very useful for complex destruction of large objects.
The same rules apply when creating pre-baked physics for .cga objects, as all the
position and rotation controllers of the objects in the CGA need to be set to TCB.
When exporting pre-baked physics animations select merge all nodes in the
export options.

Turn off all Bone Export options, but tell the exporter to export every 1 frames.
Select one object that is not moving and parent all the other pieces to it. This
object can be one you set to unyielding. In buildings, use the foundation.
The current animation will show up as Default in the CGA you export. No CAL file is
needed to play it.
Open your CGA in the character editor and play the animation labeled Default. You
should see your animation play.

















Characters and Animation

1��

Anim object and pre-baked .CGA
When using the pre-baked .cga in the game environment, it must be placed as an animobject.

There are two important properties available when using pre-baked .cga:

The first is that ActivatePhysicsThreshold is a fraction of levels gravity; thus, a heavier
piece will be harder to activate since the gravitational force that acts on it is stronger.

The second is the mass. Mass is set as the overall value for the entire CGA; for
instance, a Mass of 100 on a CGA with 100 pieces would yield 1kg per piece.

See also
You may want to create a vehicle to animate. Refer to the Creating a new car mesh
recipe in Chapter 8, Creating Vehicles







�
Creating Vehicles

In this chapter, we will cover:

Creating a new car mesh (CGA)

Creating a new car XML

Giving more speed to the car

Increasing the mass to push objects with the car

Defining a sitting location

Setting up multiple cameras for the car

Need for aaa mmmaaaccchhhiiinnneee ggguuunnn

Giving the car a weak spot

Introduction
By this point, we have covered a vast majority of the basic principles behind a lot of the
main components of CryENGINE 3. For this chapter, we will explore some more advanced
components by creating a new vehicle for your player to drive around in your level.

Creating a new car mesh (CGA)
In this recipe, we will show you how to build the basic mesh structure for your car to be used
in the next recipe. This recipe is not to viewed as a guide on how to model your own mesh, but
rather as a template for how the mesh needs to be structured to work with the XML script of
the vehicle. For this recipe, you will be using 3DSMax to create and export your .CGA.

















Creating Vehicles

200

.CGA (Crytek Geometry Animation): The .cga file is created in the 3D
application and contains animated hard body geometry data. It only supports
directly-linked objects and does not support skeleton-based animation (bone
animation) with weighted vertices. It works together with .anm files.

Getting ready

Review the Creating and exporting the static objects recipe of Chapter 6, Asset Creation.
Create a box primitive and four cylinders within Max and then create a new dummy helper.

How to do it...
After creating the basic primitives within Max, we need to rename these objects. Rename the
primitives to match the following naming convention:

Helper = MyVehicle

Box = body

Front Left Wheel = wheel1

Front Right Wheel = wheel2

Rear Left Wheel = wheel3

Rear Right Wheel = wheel4













Chapter 8

201

Remember that CryENGINE 3 assumes that y is forward. Rotate and reset any
x-forms if necessary.

From here you can now set up the hierarchy to match what we will build into the script:

1. In Max, link all the wheels to the body mesh.

2. Link the body mesh to the MyVehicle dummy helper.

Your hierarchy should look like the following screenshot in the Max schematic view:

Next, you will want to create a proxy mesh for each wheel and the body. Be sure to attach
these proxies to each mesh. Proxy meshes can be a direct duplication of the simple primitive
geometry we have created.

Before we export this mesh, make one final adjustment to the positioning of the vehicle�

1. Move the body and the wheels up on the Z axis to align the bottom surface of the
wheels to be flushed with 0 on the Z.

2. Without moving the body or the wheels, be sure that the MyVehicle helper is
positioned at 0,0,0 (this is the origin of the vehicle).

3. Also, re-align the pivot of the body to 0,0,0.

Creating Vehicles

202

Once complete, your left viewport should look something like the following screenshot (if you
have your body still selected):

After setting up the materials that you learned from Chapter 6, Asset Creation, you are now
ready to export the CGA:

1. Open the CryENGINE Exporter from the Utilities tab.

2. Select the MyVehicle dummy helper and click the Add Selected button.

3. Change the export to: Animated Geometry (*.cga).

4. Set Export File per Node to True.

5. Set Merge All Nodes to False.

6. Save this Max scene in the fffooollllllooowwwiiinnnggg dddiiirrreeeccctttooorrryyy::: MyGameFolder\Objects\
vehicles\MyVehicle\.

7. Now, click on Export Nodes to export the CGA.

Chapter 8

203

How it works...
This setup of the CGA is a basic setup of the majority of the four wheeled vehicles used
for CryENGINE 3. This same basic setup can also be seen in the HMMWV provided in the
included assets with the SDK package of CryENGINE 3.

Creating Vehicles

204

Even though the complete HMMWV may seem to be a very complicated mesh used as a
vehicle, it can also be broken down into the same basic structure as the vehicle we
just created.

The main reason for the separation of the parts on the vehicles is because each part
performs its own function. Since the physics of the vehicle code drives the vehicle forward in
the engine, it actually controls each wheel independently, so it can animate them based on
what they can do at that moment. This means that you have the potential for a four wheel
drive on aaallllll CCCrrryyyEEENNNGGGIIINNNEEE 333 vvveeehhhiiicccllleeesss,,, aaallllll aaannniiimmmaaatttiiinnnggg aaattt dddiiiffffffeeerrreeennnttt ssspppeeeeeedddsss bbbaaassseeeddd ooonnn ttthhheee fffrrriiiccctttiiiooonnn ttthhhaaattt
they grip.

Since all of the wheels are parented to the body (or hull) mesh, this means that they drive
their parent (the body of the vehicle) but the body also handles where the wheels need to be
offset from in order to stay aligned when dddrrriiivvviiinnnggg... TTThhheee bbbooodddyyy iiitttssseeelllfff aaaccctttsss aaasss ttthhheee bbbaaassseee mmmeeessshhh fffooorrr
all other extras put onto the vehicle. Everything else from Turrets to Doors to Glass Windows
branch out from the body.

The dummy helper is only the parent for the body mesh due to the fact that it is easier to
export multiple LODs for that vehicle (for example, HMMWV, HMMWV_LOD1, HMMWV_LOD2, and
so on). In the XML, this dummy hhheeelllpppeeerrr iiisss iiigggnnnooorrreeeddd iiinnn ttthhheee hhhiiieeerrraaarrrccchhhyyy aaannnddd ttthhheee body is treated as
the parent node.

Chapter 8

205

There's more...
Here aaarrreee sssooommmeee ooofff ttthhheee mmmooorrreee aaadddvvvaaannnccceeeddd ttteeeccchhhnnniiiqqquuueeesss uuussseeeddd...

Dummy helpers for modification of the parts
A more advanced trick is the use of dummy helpers set inside the hierarchy to be used in later
reference through the vehicle's mod system. How this works is that if you had a vehicle such
as the basic car shown previously, but you wanted to add on an additional mesh just to have
a modified type of this same car (something like adding a spoiler to the back), then you can
create a dummy helper and align it to the pivot of the object, so it will line up to the body of
the mesh when added through the script later on.

This same method was used in Crysis 2 with the Taxi signs on the top of the Taxi cars. The Taxi
itself was the same model used as the basic civilian car, but had an additional dummy helper
where the sign needed to be placed. This allowed for a clever way to save on memory when
rendering multiple vehicle props within a single area but making each car look different.

Parts for vehicles and their limitless possibilities
Adding the basic body and four wheels to make a basic car model is only the beginning.
There are limitless possibilities to what you can make as far as the parts on a vehicle are
concerned. Anything from a classic gunner turret seen on the HMMWV or even tank turrets,
all the way to arms for an articulated Battlemech as seen in the Crysis 2 Total Conversion
mod—MechWarrior: Living Legends. Along with the modifications system, you have the
capabilities to add on a great deal of extra parts to be detached and exploded off through
the damage scripts later on. The possibilities are limitless.

See also
Creating a new car XML

The Creating and exporting the static objects recipe in Chapter 6, Asset Creation

Creating a new car XML
In this recipe, we will show you how to build a new script for CCCrrryyyEEENNNGGGIIINNNEEE 333 tttooo rrreeecccooogggnnniiizzzeee
your car model as a vehicle entity. For this recipe, you must have sssooommmeee bbbaaasssiiiccc kkknnnooowwwllleeedddgggeee
in XML formatting.





Creating Vehicles

20�

Getting ready
Open DefaultVehicle.xml in the XML editor of your choice (Notepad, Notepad++,
UltraEdit, and so on). This XML will be used as the basic template to construct our new
vehicle XML.

DefaultVehicle.xml is found at the following location: MyGameFolder\
Scripts\Entities\Vehicles\Implementations\Xml.

Open the MyVehicle.max scene made from the previous recipe to use as a reference for the
parts section within this recipe.

How to do it...
Basic Properties:

1. First, we will need to rename the filename to what the vehicle's name would be.

2. Delete filename = Objects/Default.cgf.

3. Rename name = DefaultVehicle to name = MyVehicle.

4. Add actionMap = landvehicle to the end of the cell.

5. Save the file as MyVehicle.XML.

6. Your first line should now look like the following�

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

<Vehicle name="MyVehicle" actionMap="landvehicle">

7. Now we need to add some physics simulation to the vehicle otherwise there might be
some strange reactions with the vehicle. Insert the following after the third line (after
the Buoyancy cell):
<Simulation maxTimeStep="0.02" minEnergy="0.002"
maxLoggedCollisions="2"/>

Damages and Components:

For now, we will skip the Damages and Components cells as we will address them in a
different recipe.

Chapter 8

20�

Parts:

1. To associate the parts made in the Max file, the hierarchy of the geometry in 3DSMax
needs to be the very same as is referenced in the XML. To do this, we will first clear
out the class = Static cell and replace it with the following:
<Part name="body" class="Animated" mass="100" component="Hull">
 <Parts>
 </Parts>
 <Animated filename="objects/vehicles/MyVehicle/MyVehicle.cga"
filenameDestroyed="objects/vehicles/HMMWV/HMMWV_damaged.cga"/>
</Part>

2. Now, within the <Parts> tag that is underneath the body, we will put in the wheels
as the children:
<Parts>
 <Part name="wheel1" class="SubPartWheel" component="wheel_1"
mass="80">
 <SubPartWheel axle="0" density="0" damping="-0.7" driving="1"
lenMax="0.4" maxFriction="1" minFriction="1" slipFrictionMod="0.3"
stiffness="0" suspLength="0.25" rimRadius="0.3"
torqueScale="1.1"/>
 </Part>
</Parts>

3. Remaining within the <Parts> tag, add in wheels 2-4 using the same values as
previously listed. The only difference is you must change the axle property of wheels
3 and 4 to the value of 1 (vehicle physics has an easier time calculating what the
wheels need to if only two wheels are associated with a single axle).

4. The last part that needs to be added in is the Massbox. This part isn't actually a
mesh that was made in 3DSMax, but a generated bounding box, generated by code
with the mass and size defined here in the XML. Write the following code snippet
after the <body> tag:
<Part name="massBox" class="MassBox" mass="1500" position="0,0,1."
disablePhysics="0" disableCollision="0" isHidden="0">
 <MassBox size="1.25,2,1" drivingOffset="-0.7"/>
</Part>

5. If scripted correctly, your script should look similar to the following for all of the parts
on your vehicle:

<Parts>
 <Part name="body" class="Animated" mass="100" component="Hull">
 <Parts>
 <Part name="wheel1" class="SubPartWheel" component="wheel_1"
mass="80">
 <SubPartWheel axle="0" density="0" damping="-0.7"

Creating Vehicles

20�

driving="1" lenMax="0.4" maxFriction="1" minFriction="1"
slipFrictionMod="0.3" stiffness="0" suspLength="0.25"
rimRadius="0.3" torqueScale="1.1"/>
 </Part>
 <Part name="wheel2" class="SubPartWheel" component="wheel_2"
mass="80">
 <SubPartWheel axle="0" density="0" damping="-0.7"
driving="1" lenMax="0.4" maxFriction="1" minFriction="1"
slipFrictionMod="0.3" stiffness="0" suspLength="0.25"
rimRadius="0.3" torqueScale="1.1"/>
 </Part>
 <Part name="wheel3" class="SubPartWheel" component="wheel_3"
mass="80">
 <SubPartWheel axle="1" density="0" damping="-0.7"
driving="1" lenMax="0.4" maxFriction="1" minFriction="1"
slipFrictionMod="0.3" stiffness="0" suspLength="0.25"
rimRadius="0.3" torqueScale="1.1"/>
 </Part>
 <Part name="wheel4" class="SubPartWheel" component="wheel_4"
mass="80">
 <SubPartWheel axle="1" density="0" damping="-0.7"
driving="1" lenMax="0.4" maxFriction="1" minFriction="1"
slipFrictionMod="0.3" stiffness="0" suspLength="0.25"
rimRadius="0.3" torqueScale="1.1"/>
 </Part>
 </Parts>
 <Animated filename="objects/vehicles/MyVehicle/MyVehicle.cga"
filenameDestroyed="objects/vehicles/HMMWV/HMMWV_damaged.cga"/>
 </Part>
 <Part name="massBox" class="MassBox" mass="1500"
position="0,0,1." disablePhysics="0" disableCollision="0"
isHidden="0">
 <MassBox size="1.25,2,1" drivingOffset="-0.7"/>
 </Part>
</Parts>

Movement Parameters:

Finally, you will need to implement the MovementParams needed, so that the XML can
access a particular movement behavior from the code that will propel your vehicle. To get
started right away, we have provided an example of the ArcadeWheeled parameters, which
we can copy over to MyVehicle:

<MovementParams>
 <ArcadeWheeled>
 <Steering steerSpeed="45" steerSpeedMin="80" steerSpeedScale="1"
steerSpeedScaleMin="1" kvSteerMax="26" v0SteerMax="40"

Chapter 8

20�

steerRelaxation="130" vMaxSteerMax="12"/>
 <Handling>
 <RPM rpmRelaxSpeed="2" rpmInterpSpeed="4"
rpmGearShiftSpeed="2"/>
 <Power acceleration="8" decceleration="0.1" topSpeed="32"
reverseSpeed="5" pedalLimitMax="0.30000001"/>
 <WheelSpin grip1="5.75" grip2="6" gripRecoverSpeed="2"
accelMultiplier1="1.2" accelMultiplier2="0.5"/>
 <HandBrake decceleration="15" deccelerationPowerLock="1"
lockBack="1" lockFront="0" frontFrictionScale="1.1"
backFrictionScale="0.1" angCorrectionScale="5" latCorrectionScale="1"
isBreakingOnIdle="1"/>
 <SpeedReduction reductionAmount="0" reductionRate="0.1"/>
 <Friction back="10" front="6" offset="-0.2"/>
 <Correction lateralSpring="2" angSpring="10"/>
 <Compression frictionBoost="0" frictionBoostHandBrake="4"/>
 </Handling>
 <WheeledLegacy damping="0.11" engineIdleRPM="500"
engineMaxRPM="5000" engineMinRPM="100" stabilizer="0.5"
maxTimeStep="0.02" minEnergy="0.012" suspDampingMin="0"
suspDampingMax="0" suspDampingMaxSpeed="3"/>
 <AirDamp dampAngle="0.001,0.001,0.001" dampAngVel="0.001,1,0"/>
 <Eject maxTippingAngle="110" timer="0.3 "/>
 <SoundParams engineSoundPosition="engineSmokeOut"
 runSoundDelay="0" roadBumpMinSusp="10" roadBumpMinSpeed="6"
roadBumpIntensity="0.3" maxSlipSpeed="11"/>
 </ArcadeWheeled>
</MovementParams>

After saving your XML, open the Sandbox Editor and place down from the Entities types:
Vehicles\MyVehicle. You should now be able to enter this vehicle (get close to it and
press the F key) and drive around (W = accelerate, S = brake/reverse, A = turn left,
D = turn right)!

Creating Vehicles

210

How it works...
The parts defined here in the XML are usually an exact match to the Max scene that the
vehicle is created in. As long as the naming of the parts and the name of the subobjects
within Max are the same, the vehicle structure should work.

The parts in the XML can themselves be broken down into their own properties:

Name: TTThhheee nnnaaammmeee ooofff ttthhheee pppaaarrrttt...

Class� TTThhheee ccclllaaassssssiiififificccaaatttiiiooonnn ooofff ttthhheee pppaaarrrttt...

Base (obsolete)

Static: Static vehicle (should not be used).

Animated: The main part for an active rigid body of a vehicle.

AnimatedJoint: Used for any other part that's used as a child of the animated part.

EntityAttachment (obsolete)

Light: Light parts for headlights, rear light, and so on.

SubPart (obsolete)

SubPartWheel: Wheels.

Tread: Used with tanks.

MassBox: Driving Massbox of the vehicle.

Mass: MMMaaassssss ooofff ttthhheee pppaaarrrttt (((uuusssuuuaaallllllyyy uuussseeeddd wwwhhheeennn ttthhheee pppaaarrrttt iiisss dddeeetttaaaccchhheeeddd)))

Component: WWWhhhiiiccchhh cccooommmpppooonnneeennnttt ttthhhiiisss pppaaarrrttt iiisss llliiinnnkkkeeeddd tttooo... IIIfff ttthhheee cccooommmpppooonnneeennnttt uuussseeesss
useBoundsFromParts="1", then ttthhhiiisss pppaaarrrttt wwwiiillllll aaalllsssooo bbbeee iiinnncccllluuudddeeeddd iiinnn ttthhheee tttoootttaaalll
bounding box size.

Filename: IIIfff aaa ddduuummmmmmyyy hhheeelllpppeeerrr iiisss cccrrreeeaaattteeeddd iiinnn MMMaaaxxx tttooo bbbeee uuussseeeddd aaasss aaa pppaaarrrttt,,, ttthhheeennn aaannn
external mesh can be referenced and used as this part.

DisablePhysics: PPPrrreeevvveeennntttsss ttthhheee pppaaarrrttt fffrrrooommm bbbeeeiiinnnggg ppphhhyyysssiiicccaaallliiizzzeeeddd aaasss rrriiigggiiiddd...

DisableCollision: DDDiiisssaaabbbllleeesss aaallllll cccooolllllliiisssiiiooonnn... IIIttt iiisss aaannn uuussseeefffuuulll eeexxxaaammmpppllleee fffooorrr mmmaaassssss bbbllloooccckkksss...

isHidden: HHHiiidddeeesss ttthhheee pppaaarrrttt fffrrrooommm rrreeennndddeeerrriiinnnggg...

There's more...
The def_vehicle.xml file found in MyGameFolder\Scripts\Entities\Vehicles,
holds all the property's definitions that can be utilized in the XML of the vehicles. After
following the recipes found in this chapter, you may want to review def_vehicle.xml
for further more advanced properties that you can add to your vehicles.





































Chapter 8

211

See also
Giving more speed to the car

Increasing the mass to push objects with the car

Giving the car a weak spot

Defining a sitting location

Giving more speed to the car
Now that we have created a basic template for a car within the game, we can now start
manipulating more of the fun properties that the XML holds. Let us start out by giving this
car a bit more speed.

Getting ready
Complete the Creating a new car XML recipe. Then opppeeennn MyVehicle.xml in Notepad or an
equivalent editor.

How to do it...
Under the <ArcadeWheeled> cell, you will find the <Power> tag; within the <Power> tag
you will find a property called topSpeed=32. It is a simple matter of increasing this value to
increase the car's overall top speed.

How it works...
The Arcade Wheeled movement property is a new movement behavior sssiiinnnccceee CCCrrryyyEEENNNGGGIIINNNEEE 333...
Dealing away with the confusing gear ratios, new backend code has been written tttooo cccrrreeeaaattteee
the Arcade Wheeled for the purpose of being able to tweak the major values on wheeled
vehicles much easier.

There's more...
The following are the common properties of an Arcade Wheeled:

Acceleration: How fast the vehicle will speed up

Decceleration: How fast the vehicle will slow down

TopSpeed: Top speed that the vehicle can achieve

ReverseSpeed: Reversing speed

Handbrake-decceleration: Deceleration when hand brake is applied



















Creating Vehicles

212

See also
Creating a new car XML

Increasing the mass to push objects with the car

Giving the car a weak spot

Increasing the mass to push objects with
the car

In this recipe, we explore some of the possibilities of manipulating the Massbox that we
created when first creating the car's XML. With increasing the Massbox of the car, we will see
how the car is able to push lighter objects out of the way.

Getting ready
Complete the Creating a new car XML recipe. Then opppeeennn MyVehicle.xml in Notepad or an
equivalent editor.

How to do it...
As simple as the previous recipe was, this one will be just as easy to make a massive change
to your vehicle.

Begin by finding the car's part named massBox. To increase the mass of the MassBox, simply
increase the mass = 1500 to a higher value such as 3500.

The mass in CryENGINE 3 is measured in kilograms.

How it works...
A simple method to see the results of how easy it is for the car to move objects out of its way
is to place down a basic entity with a mass of 1000 and then drive into it with the previous
MassBox properties. Then repeat the process again with the 3500 MassBox value.

After changing any XML values on the car, you can reload the XML on the car
by right-clicking on the vehicle and selecting Reload Scripts.







Chapter 8

213

The MassBox is a special part of the vehicle that handles all of the physical interactions of the
vehicle as a whole. Along with Arcade Wheeled as the movement behavior, the Massbox is the
main point of reference for the car and all its parts for mass physics calculations (as long as
all those parts remain on the vehicle).

Be aware that increasing the mass of the MassBox will also change the
driving characteristics of the car.

There's more...
It is possible to define the mass of other parts besides the Massbox. However, with Arcade
Wheeled movement parameters, this property change will do virtually nothing, but with other
movement behaviors it may change the driving mechanics such as the Wheeled Legacy
(which should not be used as that movement behavior is no longer supported).

Still, there is a use of this property and that is if ever we want to create a part to be detached
from the vehicle, this part requires a mass in order to follow the laws of physics for the
CryENGINE, such as gravity.

See also
Creating a new car XML

Defining a sitting location
Up to this point, we haven't addressed the issue of the player hanging out of the side of the
vehicle every time the they enter it. This is due to the fact that there is no sitting position
defined for the driver position and thus leaves the player in the last position and pose before
entering the vehicle. In this recipe, we will fix this problem by creating a new helper within the
vehicle XML.

Getting ready
Complete the Creating a new car XML recipe. Then open MyVehicle.xml in Notepad or an
equivalent editor.



Creating Vehicles

214

How to do it...
1. Between the <Parts> and <Seats> cells, you will need to insert the following lines

into the car XML:
<Helpers>
 <Helper name="driver_sit_pos" position="-
0.75,0.25,1.5"direction="0,1,0" part="body"/>
</Helpers>

2. After writing in the Helpers cell, we now need to define on the driver seat which
helper the player needs to take in order to be positioned in that seat.

3. For ttthhheee <Seat name="driver"> cell, yyyooouuu wwwiiillllll nnneeeeeeddd tttooo ccchhhaaannngggeee ttthhheee fffooollllllooowwwiiinnnggg
property:
sitHelper=""

4. Change this value to:
sitHelper="driver_sit_pos"

5. Save the XML and reload the car in the level.

How it works...
This simple seat helper lets the vehicle code know where the passengers of that particular
seat need to be positioned in the vehicle. Be aware that this only aligns the root pivot of the
character to this position. So in order to pose a character to sit in this position, it is a good
practice to create a new animation graph and animation that moves the character so that
the root pivot aligns to a bone on the character such as the pelvis.

There's more...
You can use the HMMWV animation graph to give a seated position to your character. If no
changes to the player model have been made to the skeleton, then we will be able to utilize
the animation graph from the SDK's HMMWV to pose our character. Within the same <Seat
name="driver"> cell, add the following property:

agVehicleName="HMMWV"

This will use the animation graph to play the same animations used for entering and exiting
the vehicle as well as utilizing the same sitting pose as the one used for the HMMWV.

Chapter 8

215

See also
Creating a new car XML

Setting up multiple cameras for the car

Setting up multiple cameras for the car
In this recipe, we will demonstrate how you can set up different cameras at different positions
to be utilized within the game. We will demonstrate some of the basic views such as First
Person and Third Person as well as the popular Wheel rim camera usually used in action
replays in various other media.

Getting ready
Complete the Creating a new car XML recipe. TTThhheeennn ooopppeeennn MyVehicle.xml in Notepad or an
equivalent editor.

How to do it...
First Person Camera:

1. After the Creating a new car XML recipe, we should already have the majority of
what we need in the <Seats> cells. For our first camera, we will utilize the <View
class="FirstPerson"> cell to make a new first person camera that we can also
look around with.

2. First, we will need a new Helper. Copy the following into the <Helpers> cells:
<Helper name="driver_view" position="-0.75,0.35,2.0"
direction="0,1,0" part="body"/>





Creating Vehicles

21�

3. Now, define this driver_view helper in the empty FirstPerson.helper
property:
<FirstPerson helper="driver_view" />

4. To allow the player to look around in this First Person view, we will need to add/
change the properties in the FirstPerson class to match the following line:
<View class="FirstPerson" canRotate="1" rotationMin="-45,0,-170"
rotationMax="45,0,170">

The rotationMin and rotationMax are measured in degrees.

5. You may need to tweak the position a bit, but the result should look something like
the following screenshot:

By default, F1 toggles the player's camera. This also works
within vehicles.

Third Person Camera:

Since the creation of the car, the Third Person camera is basically set up. However, we may
want to adjust some of the properties to the following:

<ThirdPerson distance="3" heightOffset="2.5" speed="1" />

This will bring the overall distance a little closer, push up the camera's height as well as slow
down the camera to induce a little bit of lag, allowing the car to move further ahead of the
camera a bit when driving really fast or lag a bit on sharp turns.

Chapter 8

21�

Wheel Camera:

1. This is a bonus camera that may add a bit of fun when cycling between cameras. To
make this camera, we will need to first create a new view. Copy the following into your
<Views> cell:
<View class="FirstPerson" canRotate="0">
 <FirstPerson helper="wheel_cam" />
</View>

2. Next, we need to create a new helper for this camera:
<Helper name="wheel_cam" position="1.9,-0.5,0.5" direction="0,1,0"
part="body"/>

This position will depend on the body of the vehicle and the
position of the wheels from the mesh.

3. In the end, the desired affect is a Wheels Camera that resembles something like the
following screenshot:

Creating Vehicles

21�

How it works...
Just like defining a helper position for the sitting position, helpers can be used in a number
of different places on the XML and the cameras are no different. Utilizing the positions and
directions of the helpers, you will be able to create some interesting camera positions of
your own.

There's more...
Some additional cameras such as SteerThirdPerson and ActionThirdPerson (no longer
supported) can also be utilized as other styles of cameras when the player is sitting in the
seat of the vehicle. You can find their properties from def_vehicle.xml (MyGameFolder\
Scripts\Entities\Vehicles).

See also
Creating a new car XML

Need for a machine gun
In this recipe, we will do something fun with the car and attach a machine gun to the vehicle
and have it be fired from the driver's seat.

Getting ready
Complete the Creating a new car XML recipe. Then opppeeennn MyVehicle.xml in Nooottteeepppaaaddd ooorrr aaannn
equivalent editor. Delete the following cells from MyVehicle.xml:

<Weapons>
 <Primary/>
</Weapons>
<ActionParts/>

How to do it...
In the cells that were just deleted (as they were obsolete), copy the following lines:

<SeatActions>
 <SeatAction class="Weapons">
 <Weapons isSecondary="0">
 <Weapons>
 <Weapon class="AsianCoaxialGun" part="body">
 <Helpers>



Chapter 8

21�

 <Helper value="mgun_out"/>
 </Helpers>
 </Weapon>
 </Weapons>
 </Weapons>
 </SeatAction>
</SeatActions>

How it works...
The newly added <SeatAction> tag is used for any weapons that are made for the vehicles.
The weapon itself can use a helper to fire from and if the weapon is set up on a part, then the
weapon will rotate with that part as well (such as a turret).

The flag of isSecondary handles whether the weapon is fired from the primary fire button or
if it uses the secondary fire button.

See also
Creating a new car XML

Giving the car a weak spot
From the Creating a new car XML recipe, we skipped the Damages and Components section
of the XML. Now it is time to return to that section and give this car a weak spot.

Getting ready
Complete the Creating a new car XML recipe. Then open MyVehicle.xml in Notepad or an
equivalent editor.

How to do it...
1. We need to first create a new cell in between <Physics> and <Components/>.

Copy the following code snippet to that location:
<Damages submergedRatioMax="0.6" submergedDamageMult="1"
collDamageThreshold="10" groundCollisionMinMult="1.3"
groundCollisionMaxMult="1.4" groundCollisionMinSpeed="8"
groundCollisionMaxSpeed="22">
 <DamageMultipliers>
 <DamageMultiplier damageType="bullet" multiplier="0.125"/>
 <DamageMultiplier damageType="collision" multiplier="1"/>
 </DamageMultipliers>



Creating Vehicles

220

 <DamagesGroups>
 <DamagesGroup name="Destroy" useTemplate="CarDestroy">
 </DamagesGroup>
 </DamagesGroups>
</Damages>

2. The <Damages> tag here handles the global damage done to the entire vehicle, such
as if the vehicle is submerged under water, collisions with the entire vehicle, global
damage multipliers (which will be further explained in the How it works... section)
and also the <DamagesGroups> tag, which usually handles the destruction of the
vehicle. We will cover that later on.

3. Next, we will need to create the components of the vehicle:
<Components>
 <Component name="Hull" damageMax="100" position="0,0.5,1"
size="2.5,4,2" useBoundsFromParts="0">
 <DamageBehaviors>
 <DamageBehavior class="Group" damageRatioMin="1">
 <Group name="Destroy"/>
 </DamageBehavior>
 </DamageBehaviors>
 </Component>
 <Component name="weakspot" damageMax="100" position="0,-2,1"
size="2.5,1,2" useBoundsFromParts="0">
 <DamageMultipliers>
 <DamageMultiplier damageType="bullet" multiplier="1"/>
 </DamageMultipliers>
 <DamageBehaviors>
 <DamageBehavior class="Group" damageRatioMin="1">
 <Group name="Destroy"/>
 </DamageBehavior>
 </DamageBehaviors>
 </Component>
</Components>

4. The two components set previously create two different bounding boxes. One is the
main hull, which wraps around 85 percent of the vehicle at the front, while the other
is the weakspot, which covers the back.

Chapter 8

221

How it works...
Since the components do not overlap each other, this allows for the vehicle to respond
differently when the vehicle gets hit in either location. In this example, we have set up a
DamageMultiplier on the weakspot component to be much higher for bullets. This will make
sure the bullet damage it receives is not reduced and will quickly reach the component's
maximum health limit of 100. When that happens it will call the damage behaviour group
Destroy, which was written at the beginning of the recipe.

The damage group Destroy uses the DamagesTemplate called CarDestroy. This
template is a global DamageBehaviour that's written in an external XML and can be
accessed from other vehicle XMLs for ease of setup.

The DefaultVehicleDamages.xml can be found in the following location:
MyGame\Scripts\Entities\Vehicles\DamagesTemplates\.

There's more...
Additional damage behaviors can be utilized such as Burn, Effect (particle effects), Explosion
(with impulse), HitPassenger, and many more. See def_vehicle.xml for the complete list.

See also
Creating a new car XML

�
Game Logic

In this chapter, we will cover:

How to beam the player to a tag point from a trigger

Making the AI go to a location when the player enters a proximity trigger

Debugging the Flow Graph

Creating a kill counter

Rewarding the player for reaching a kill goal

Displaying the player's health through a Flow Graph

Changing the player camera through key input

Creating a countdown timer

Creating a sound event

Introduction
While we have explored much of the external scripting in the previous chapters, we shall now
look at more of the inner workings of the game logic that is made via a Flow Graph. Being
one of the most power tools for any designer, in this chapter, we shall explore some of the
examples that can be created with the Flow Graph.

How to beam the player to a tag point from
a trigger

In this recipe, we will demonstrate a basic use of setting up a trigger area and then teleporting
the player to a particular location once the player walks inside that trigger area.



















Game Logic

224

Getting ready
Before we begin, you must have the Sandbox open

Then open My_Level.cry

How to do it...
1. In the RollupBar, click on the Entities button.

2. Under the Triggers section, select ProximityTrigger.

3. Place this ProximityTrigger on the ground with the following property changes:

DimX = 10

DimY = 10

DimZ = 5

OnlyPlayer = True

4. Next, draw down a solid to mark the area where we might see the trigger area that
the player nnneeeeeedddsss tttooo eeennnttteeerrr... MMMaaatttccchhh ttthhheee dddiiimmmeeennnsssiiiooonnnsss tttooo ttthhheee fffooollllllooowwwiiinnnggg———10x10x1 meter.













Chapter 9

225

5. Next, place down a tag point to reference as the beaming destination.

6. In the RollupBar, click on the AI button.

7. From the Object Type, select Tagpoint.

8. Place the tag point several meters away from the trigger.

9. And finally, we need to create the logic within the Flow Graph to trigger the beaming
event for the player.

10. Right-click the ProximityTrigger | Create Flow Graph.

11. Name the Flow Graph Beam_Trigger and click OK.

12. Go back into the editor's perspective viewport and select the ProximityTrigger.

13. Open the Flow Graph editor again and select the ProximityTrigger within the
FG hierarchy.

You can re-open the Flow Graph from the main
Tool Bar | View | Open View Pane | Flow Graph.

14. Right-click in an open space and click Add Selected Entity.

15. Repeat steps 3 to 5 for the tag point.

Game Logic

22�

You can also select multiple entities and add them all at the
same time within the Flow Graph.

16. RRRiiight-click Add Node | Entity | Beam Entity.

17. Then right-click Add Node | Game | Local Player.

18. Link the Enter output from the ProximityTrigger to the input of Beam on the
BeamEntity node.

19. Link the entityId of the LocalPlayer node to the input of Choose Entity in the
BeamEntity node.

20. Link the pos output from the Tagpoint node to the Position input on the
BeamEntity node.

Now every time the player walks into the defined proxy trigger area, the player will be beamed
to the tag point's world coordinates.

How it works...
Beaming wwwiiittthhhiiinnn CCCrrryyyEEENNNGGGIIINNNEEE 333 iiisss llliiikkkeee iiinnnssstttaaannntttlllyyy ttteeellleeepppooorrrtttiiinnnggg aaannn eeennntttiiitttyyy tttooo aaannnyyy dddeeefififinnneeeddd lllooocccaaatttiiiooonnn iiinnn
the level. With this setup, we are telling the code to beam the player to the tag point's defined
Vec3 position within the world as soon as they enter the trigger. This works with any entity type
within CryENGINE 3...

Chapter 9

22�

See also
The Debugging the Flow Graph recipe

Making the AI go to a location when the
player enters a proximity trigger

In this recipe, we will demonstrate how you may be able to give a basic Goto command to an
AI (Artificial Intelligence) when the player enters a trigger.

Getting ready
Open Sandbox and then open My_Level.cryyy

Complete the How to beam the player to a tag point from a trigger recipe to learn how
to place the proximity triggers

Then place down a new Grunt

How to do it...
1. First, place down a proximity trigger and a solid with the same dimensions and

properties as the previous recipe.

2. Then place down an AI tag location within that same trigger area.

3. Next, create a new Flow Graph from the trigger area called AI_Goto.

4. Within the Flow Graph, create the following logic:

From the perspective viewport of the editor, select the ProximityTrigger and
the TagPoint

Add Selected Entities to the Proximity Trigger Flow Graph

Add Node | AI | AIGoto

5. Select a Grunt from the perspective viewport.

6. Back in the Flow Graph, right-click AIGoto | Assign Selected Entity.

7. Link Enter output from the ProximityTrigger to the Sync input of AIGoto.















Game Logic

22�

8. Link pos output from the TagPoint to the pos input of AIGoto.

With that logic now set up, the AI should now attempt to go to that tag point (unless its
behavior is interrupted by perceiving the player).

How it works...
With the AIGoto node, this trigger is a nudge to the AI's behavior tree to signal a basic
command for the AI to go to a specific location. Unless the AI's behaviour is not currently
busy with other tasks, the AI will proceed to the defined location.

There's more...
Here is an extra Flow Graph node you might want to try as well.

AIGotoEx
An extended version of the AIGoto node is the AIGotoEx. This node allows the designer to
forcefully command the AI to go to a particular location regardless of the current condition of
its state. This is a key node to use if the designer wants to force the AI to retreat for example.

See also
The Debugging the Flow Graph recipe

Chapter 9

22�

Debugging the Flow Graph
Now that we have some basic Flow Graphs already made, we will now look at how to debug
them to find out when certain events are firing. This will aid any designer to track down any
Flow Graph logic errors that might occur.

Getting ready
You should have completed the How to beam the player to a tag point from a
trigger recipe

Open My_Level.cry within the Sandbox

How to do it...
Open up the Flow Graph editor and open the Flow Graph. To enable the Flow Graph
debugging, click on the icon that resembles a bug:

How it works...
Each time you enter the game mode with the debugger turned on, any of the Flow Graph
outputs that are triggered within the level will change their arrows from blue to yellow. They
will also display numbers above the yellow arrow if the trigger has been triggered more than
once, which is equal to the number of times the output has fired.





Game Logic

230

There's more...
To clear the Flow Graph debug results, click on the Trash Icon next to the Debug Icon within
the Flow Graph:

See also

The How to beam the player to a tag point from a trigger recipe

Creating a kill counter
In this recipe, we will look at one of the many methods to make a quick kill counter for the
player based on the HitInfo taken from raycasted weapons (melee, bullets, and so on) and
also using the Grunt entity types as the targets.

Getting ready
Open My_Level.cry within the Sandbox

How to do it...
1. Begin by placing an AreaTrigger entity onto the map to use as the container for the

Flow Graph.

2. In the RollupBar, click on the Entities button.

3. Under the Triggers section, select AreaTrigger.

4. Right-click the newly placed AreaTrigger and create a new Flow Graph. Name the
Flow Graph as KillCounter.

5. With the Flow Graph open and the new AreaTrigger selected, add in the
following nodes:

2x Game:LocalPlayer

Crysis:HitInfo

Math:Counter

HUD:DisplayDebugMessage

6. Set Crysis:HitInfo Enable to true (1).













Chapter 9

231

7. You will also need to place down at least one Grunt within the level. Then with
the Grunt selected, go back into the AreaTrigger Flow Graph and right-click
Add Selected Entity.

8. Link the Flow Graph together as follows:

Game:LocalPlayer entityId out to Crysis:HitInfo ShooterId in.

Crysis:HitInfo TargetId out to entity:Grunt Grunt # in. (This will change to
<Input Entity> as these nodes take the entity IDs.)

entity:Grunt Dead out to Math:Counter in in.

Math:Counter count out to HUD:DisplayDebugMessage Show in AND
message in.

Second Game:LocalPlayer entityId out to HUD:DisplayDebugMessage
Choose Entity in.

9. The resulting Flow Graph should look like the following:

How it works...
Using the Crysis:HitInfo node within the Flow Graph checks to see what the player is hitting
with any Raycasting weapons such as bullets or melee for example. Each time the player
lands a hit on an entity, the TargetId is then triggered in this node. As we are comparing
against Grunt type entities, it checks to see if that TargetId died. If the Grunt has died from
this event, it forwards a true value in the Boolean only once, which gets counted by the Math:
Counter. The total value of the Math Counter is then displayed back to the player showing how
many times the player has killed the Grunts.











Game Logic

232

The number displayed will appear in the upper-left corner of the screen after the successful
kills have been made:

See also
The Rewarding the player for reaching a kill goal recipe

Rewarding the player for reaching a kill goal
This recipe is a slight extension to the previous one. There are plenty of ways that the
designers may want to reward the player in their title, but in this recipe, we will look at getting
the player to kill five Grunts using just melee and then reward them by giving them a SCAR
assault rifle.

Getting ready
You should have completed the Creating a kill counter recipe

Then open My_Level.cry within the Sandbox







Chapter 9

233

How to do it...
1. Open the KillCounter AreaTrigger Flow Graph and add in the following flow nodes�

Game:LocalPlayer

Math:Equal

Inventory:AddItem

2. Set Math:Equal B to 5.

3. Link the Flow Graph together as follows:

Math:Counter count out to Math:Equal A in

Math:Equal true out to Inventory:AddItem add in

Game:LocalPlayer entityId out to Inventory:AddItem Choose Entity in

4. The end resulting Flow Graph should look like the following:

The Kill Counter and Kill Goal colored boxes around the nodes
are comment boxes. To add a comment box, right-click in the Flow
Graph and click Add Comment Box.













Game Logic

234

How it works...
Branching off the Kill Counter, we can use the Math:Counter to find what kill number the
player is at. Using the Math:Equal node, we can run a simple comparison to any value we
please and in this example we used 5. So as soon as the Math:Counter reaches a value of
5, the Math:Equal node outputs a true statement and allows the SCAR to be added to the
player's inventory.

See also
The Creating a kill counter recipe

Displaying the player's health through a
Flow Graph

Unfortunately, with ttthhheee CCCrrryyyEEENNNGGGIIINNNEEE 333 SSSDDDKKK ttthhheeerrreee iiisss nnnooo cccuuurrrrrreeennnttt HHHUUUDDD eeellleeemmmeeennnttt iiinnn ppplllaaaccceee ttthhhaaattt
displays the player's health out of the box. In this recipe, however, we will look at adding
in a health display through the Flow Graph that will show the player's health in a
numerical fashion.

Getting ready
Open My_Level.cry within the Sandbox

How to do it...
1. Begin by placing an AreaTrigger entity onto the map to use as the container for the

Flow Graph.
2. In the RollupBar, click on the Entities button.
3. Under the Triggers section, select AreaTrigger.
4. Right-click the newly placed AreaTrigger and create a new Flow Graph. Name the

Flow Graph PlayerHealth.
5. With the Flow Graph open and the new AreaTrigger selected, add in the

following nodes:
Game:LocalPlayer
Time:Timer
Game:ActorGetHealth
HUD:DisplayDebugMessage

6. Set Time:Timer period to 0.05.











Chapter 9

235

You may also need to adjust the posX or posY on the
HUD:DisplayDebugMessage if you have the Kill Counter as well.

7. Link the Flow Graph together as follows:

Game:LocalPlayer entityId out to Game:ActorGetHealth Choose Entity in

Time:Timer out out to Game:ActorGetHealth Trigger in

Game:ActorGetHealth Health out to HUD_DisplayDebugMessage Show
AND message in

Game:LocalPlayer entityId out to HUD_DisplayDebugMessage Choose
Entity in

8. The resulting Flow Graph should look like the following:

We should now see a numerical value of 100 in the upper-left corner of the screen the next
time we enter into Game Mode on this level.

How it works...
Although this is kind of an expensive method of measuring the player's health, the timer
is periodically getting the player's health (every 0.05 seconds) and outputting it to a HUD
message for the player to read.









Game Logic

23�

Changing the player camera through key
input

In this recipe, we will look at a simple setup to allow the player to switch from the First Person
view to the Third Person view.

Getting ready
Open My_Level.cry within the Sandbox

How to do it...
1. Begin by placing an AreaTrigger entity onto the map to use as the container for the

Flow Graph.

2. In the RollupBar, click on the Entities button.

3. Under the Triggers section, select the AreaTrigger.

4. Right-click the newly placed AreaTrigger and create a new Flow Graph. Name the
Flow Graph as PlayerViewToggle.

5. With the Flow Graph open and the new AreaTrigger selected, add in the
following nodes:

Game:LocalPlayer
Input:Key
Logic:Sequentializer
3x System:ConsoleVariable
Misc:Start

6. Set the input Key = g.

7. Set all three System:ConsoleVariable Cvar=g_tpview_enable.

8. Set one System:ConsoleVariable Value=1.

9. Link the Flow Graph together as follows:
Game:LocalPlayer entityId out to Input:Key Choose Entity in
Input:Key Pressed out to Logic:Sequentializer In in
Logic:Squentializer Out1 to System:ConsoleVariable Set in (this needs to
be g_tpview_enable = 1)
Logic:Sequentializer Out2 to System:ConsoleVariable Set in (this needs to
be g_tpview_enable = 0)
Misc:Start output out to System:ConsoleVariable Set in (this needs to be
g_tpview_enable = 0)





















Chapter 9

23�

10. The resulting Flow Graph should look like the following:

How it works...
This Flow Graph has an input listener that waits for the specific key to be pressed by the
entityId it is assigned (in this case, the player). Once this key is pressed, it will toggle the
console variable that enables Third Person view. The Misc:Start to force set the CVar is a
preventative measure to make sure the player is in First Person on Game Start.

This is not an ideal method of modifying the view of the player for final release as this should
actually be done in code. However, this Flow Graph will do the job until code can perform this
same function.

There's more...
An alternative camera to the standard Third Person view is the goc_camera, which – by
default – hangs over the right shoulder of the player. Explore the goc_camera's capabilities
with the following CVars:

goc_enable

goc_targetx

goc_targety

goc_targetz

g_tpview_force_goc











Game Logic

23�

Creating a countdown timer
In this recipe, we will look at one possible way to create a countdown timer from 60 to 0
seconds that the player will see on-screen.

How to do it...
1. Begin by placing an AreaTrigger entity onto the map to use as the container for the

Flow Graph.
2. In the RollupBar, click on the Entities button.
3. Under the Triggers section, select the AreaTrigger.
4. Right-click the newly placed AreaTrigger and create a new Flow Graph. Name the

Flow Graph as CountDownTimer.
5. With the Flow Graph open and the new AreaTrigger selected, add in the

following nodes:
Game:LocalPlayer
HUD:DisplayDebugMessage
Misc:Start
Math:SetNumber
Math:Sub
Time:Timer
Math:Counter
Math:Equal

6. Set Time:Timer period=1.
7. Set Math:SetNumber in=60.
8. Set Math:Equal B=60.
9. Link the Flow Graph together as follows:

Game:LocalPlayer entityId out to HUD:DisplayDebugMessage Choose
Entity in
Misc:Start output out to Math:SetNumber set in
Math:SetNumber out out to Math:Sub A in
Time:Timer out out to Math:Counter in in
Math:Counter count out to Math:Sub B in
Math:Counter count out to Math:Equal A in
Math:Equal true out to Time:Timer paused in
Math:Sub out out to HUD:DisplayDebugMessage Show AND message in

































Chapter 9

23�

10. The resulting Flow Graph should look like the following:

How it works...
A simple use of the timer and math counter outputs the value that is used to subtract from
the 60 value from Math:SetNumber. As soon as the counter reaches 60, the Math:Equal
node sends a signal to the timer to pause itself and stop the count at 0.

There's more...
One addition to this could be the node of Math:Round. Linking the result of the Math:Sub to
the In input of this node and linking the outRounded value to the HUD:DisplayDebugMessage
will round the numbers down to an integer.

10
Track View and

Cut-Scenes

In this chapter, we will cover:

Creating a new Track View sequence

Animating a camera in the Track View

Triggering a sequence using the Flow Graph

Animating entities in the Track View

Playing animations on the entities in the Track View

Using console variables (CVars) in the Track View

Using track events

Introduction
The Track View editor is the embedded Sandbox cut-scene creation tool for making interactive
movies, such as sequences with timeline dependent control over objects and events in
CryENGINE 3. For those already familiar with the CryENGINE 2 Track View system, you will see
that it is quite similar, although improvements have been made to tools such as curve editor
and director tracks can now be used for what used to be complex sequences.

Using Track View, creating cinematic cut-scenes and scripted events are both possible,
allowing you to sequence objects, animations, and sounds in a scene that can be triggered
during a game and played either as a detached cut-scene from the third person perspective,
or from the first person perspective of the player as he plays the game.















Track View and Cut-Scenes

242

Sequences created with the Track View can be triggered in a game with a specific Flow Graph
node. Different properties enable sequences to range from passive in-game scenarios up to
fully uncoupled cut-scenes.

This system will be familiar to anyone who has used animation software such as 3ds Max, but
this guide will also help those unfamiliar with cut-scene editors to start creating simple scenes
for your levels.

Creating a new Track View sequence
Creating Track View sequences are very akin to creating animation within the key frame
animation DCC tools.

This recipe will familiarize you with the Track View editor and take you through some of the
important interface controls.

How to do it...
Let's create our own Track View sequence:

1. Open Sandbox and then open any level.

Any time you add cut-scenes or Track View sequences
to a level, you should always make a new layer to add
your objects onto. This will allow you to control all these
objects independently of the level and hide or show
them when needed.

An objjjeeecccttt iiisss ppplllaaaccceeeddd ooonnntttooo wwwhhhaaattteeevvveeerrr lllaaayyyeeerrr iiisss aaaccctttiiivvveee wwwhhheeennn ttthhheee nnneeewww TTTrrraaaccckkk VVViiieeewww ssseeeqqquuueeennnccceee
is created.

Chapter 10

243

2 Add a layer called Cinematics.

Once the layer is added, ensure that it is the active layer by checking that it is
highlighted.

3. To createee aaa TTTrrraaaccckkk VVViiieeewww ssseeeqqquuueeennnccceee,,, ooopppeeennn ttthhheee TTTrrraaaccckkk VVViiieeewww pppaaannneeelll ssseeellleeeccctttiiinnnggg ttthhheee mmmeeennnuuu
option View | Open View Pane | Track View.

4. Click on thhheee Add Sequence icon in the TTTrrraaaccckkk VVViiieeewww eeedddiiitttooorrr tttooo cccrrreeeaaattteee aaa nnneeewww ssseeeqqquuueeennnccceee:::

5. Clicking the Add Sequence icon will present you with the opportunity to name the
sequence. Name this sequence my_first_cutscene.

6. When the sequence is added, a new object is placed on the active layer. This
object is called a sequence object and will store all the information for our Track
View sequence.

7. Now that we have created a new sequence, it's time to adjust some of the
fundamental settings for it.

8. To do this, click the Edit Sequence icon:

Upon clicking Edit Sequence, you will be presented with the properties window. Many
of the properties here are self-explanatory.

Track View and Cut-Scenes

244

9. In our case, let's simply adjust the length of the sequence by changing the EndTime
parameter to 30.

By default, the Track View editor's timeline will display time
in seconds.

Now that we have the basic setup, let's add some tracks to our sequence:

1. The first track that we will add will be a director node.

2. The director node allows us to activate different cameras throughout the course of
the Track View allowing a simple form of camera cutting. In our example, we will only
use a single camera but it is a good practice to always add a director node to your
sequences.

3. To add the director node, right-click in the empty whitespace in the left-hand side of
the Track View editor. You will see a large dialog with many different track additions
that you can make.

4. Select to add a director (scene) node:

Chapter 10

245

We will use this director node to activate different cameras in the following recipe.

How it works...
This sequence that we just added is the cut-scene itself. For each sequence, you can add
a number of nodes for each object that you use, including the top-level node of the scene
itself—this was what we added the director node to. For each node that you have, you can
have a number of tracks, depending on what kind of node it is. Each track is measured in
seconds, and has points marked on it to indicate where a key frame or event starts.

There's more...
You will likely want to know more about the available properties in the sequence as well as
some additional tracks that you can add to the director node.

Track View and Cut-Scenes

24�

Available tracks in the director node
The director node has unique tracks that can be added to it. Adding a track to any node
can be done simply by right-clicking the node and selecting an available track; some of
these include:

Console allows a key frame to contain information to be passed to the engine's
console. An example could be changing the level of detail settings to high
for cut-scenes.

Capture allooowwwsss aaa cccaaappptttuuurrreee cccooommmmmmaaannnddd tttooo bbbeee ssseeennnttt tttooo ttthhheee eeennngggiiinnneee tttooo aaallllllooowww fffooorrr ttthhheee ooouuutttpppuuuttt ooofff
the TTTrrraaaccckkk VVViiieeewww cccuuuttt---sssccceeennneeesss tttooo ssseeeqqquuueeennntttiiiaaallllllyyy cccaaappptttuuurrreee fffrrraaammmeeesss...

Sequence properties
Selecting the Disable Hud checkbox disables the default player's HUD. Selecting the Disable
Player checkbox hides the player during the scene. 16:9 enables the black bar effect.
Non-Skippable means that if the player decides to skip the scene, it will continue to play.

See also
Go to ttthhheee Animating a camera in the Track View recipe in this chapter to start
creating your own cut-scenes

Go to the Animating entities in the Track View later in this chapter to animate objects
in your sequence

Animating a camera in the Track View
This recipe will take you through adding a camera to a Track View sequence and animating it.
We will create a flythrough of our level using some basic animation techniques and then play it
back in the editor.

Getting ready
To follow this recipe, you should have created a new TTTrrraaaccckkk VVViiieeewww ssseeeqqquuueeennnccceee wwwiiittthhh aaa dddiiirrreeeccctttooorrr tttrrraaaccckkk
already added.

How to do it...
Having added a new track view sequence and a director node, we need some objects to direct:

1. First navigate to the misc section in the rollout bar and click-and-drag the camera
entity into the level.

2. This will create a wireframe preview of the camera's view. You can move this object in
the world as you would with any other entity.









Chapter 10

24�

3. Rename this camera to cinematic_camera1. At this point, you should adjust your
view to be able to quickly preview the actual camera view.

4. You can do this by configuring your viewport layout to have a camera and perspective
view concurrently.

5. For this example, however, we will only animate the camera movement from the
camera's viewpoint and not from the perspective view.

6. To do this, change your active view to cinematic_camera1 by right-clicking on the top
bar in the viewport:

7. Re-open the dialog and also de-activate the Lock Camera Movement. This will allow
us to control the movement of the camera from its own perspective.

Back in the Track View editor, let's now add this camera:

1. To add any entity to a Track View sequence, simply select the entity in the editor, in
our case the cinematic_camera1 entity, and then add it to the track view sequence
using the add selected entity icon.

Track View and Cut-Scenes

24�

You will notice that when the camera is added to the sequence, it already has some
default tracks attached.

A camera node can have only the default tracks such as Fov,
Position, and Rotation, plus an events track, but animated
objects and characters can have many more.

2. Having unlocked the camera movement, we must now click the record icon in
the Track View to automatically key frame any movement changes to an object
in the editor.

3. Select the camera in the editor; you can do this quickly by double-clicking the entity in
the Track View. Click Record and move the camera to its initial start position.

4. You can move the camera in the exact same way you navigate the viewport in the
Sandbox. It does however, allow us to do interesting motions, such as banking or
rotating the camera.

5. Navigate the camera to a good starting position where you'd like the flythrough of the
environment to begin.

6. Notice that key frames are added for Position and Rotation automatically while the
record icon is active.

You can also animate FOV, which is helpful for zooming in on
the object quickly.

7. Next, move the active time slider to 10 seconds.

8. Keeping in mind that the animation will be interpolated between two key frames,
make another key frame at 10 seconds by moving the camera to a different position.

Chapter 10

24�

At this new position, let's add some roll to the camera:

1. With the camera selected, click the select and rotate tool and then in the type-in
dialogs at the bottom of the view port, type in a value in the Y parameter. The
higher the value, the more the camera will roll. Use negative values to roll in the
other direction.

2. Another effective way of adding variations to the movement is by using the curve
editor. The curve editor can be accessed through the View section of the Track
View editor.

3. Change the view to the curve editor and select and drag one of the axis key frames to
a different location at frame 10. Notice that since the key frames are stored in three
XYZ channels, position keys and rotation keys can be edited independently of each
other. Position keys are stored in world coordinates and rotation keys are stored in
local coordinates. You may also notice the Bezier modifiers on each key frame. This
will allow tangents to be adjusted between key frames.

4. Change the view back to the dope sheet and scrub the time slider from frame 10 to
frame 0 and back. Notice that you are instantly able to preview the animation!

5. Drag the time slider to 20 seconds and create a new position for the camera in the
direction the camera is currently facing forward to the final position for this recipe.
Since we are animating a flythrough, you can of course create as many key frames as
you like by dragging the time slider forward and moving the camera to a new position
for as long as you want your sequence to last.

For this recipe, our sequence is only three key frames long.

Track View and Cut-Scenes

250

6. Preview the entire sequence by clicking the play icon.

Having created key frames at 0, 10, and 20 seconds, you may find that the camera is
too fast or too slow. There are two ways to adjust this, first is the most accurate is to
select all the key frames at a particular time and bring the time between key frames
down by dragging them closer; alternatively, drag them further apart for longer
sequences.

7. To return to the default camera view, click the default camera, where you unlocked
the camera's movement.

Make sure to save this sequence as we will reuse it later on in this chapter.

8. Save the .cry file as Forest_sequences.cry.

How it works...
This sequence that we have created can be triggered via different means during the game
mode for a variety of purposes. A simple flythrough can be used to introduce areas, give the
player a unique view of events, and to further story and narrative. It is also commonly used to
create game play specific events to occur, such as the movement of certain entities within the
world and so forth.

There's more...
You may want to know more about the playback speed or some of the other available tracks
for the camera.

FOV
The Field of View (FOV) on a camera can be set and animated by changing the value on the
camera entity, which will be key framed while the record is active. Alternatively, you can type
in the values to a manually created key frame by double-clicking anywhere on the FOV track.
Some good FOV values for cut-scenes are usually 35-45 depending on the required shot.

Playback speed
You can adjust the play speed of the Track View editor by clicking the pull-down icon beside
the play button.

The options available will not translate to in-game triggering of this sequence and will only be
used for previewing in the editor.

Curve editor
Animators will likely be familiar with a curve editor approach to key framing objects within
Track View. You can adjust your view to contain both the curve editor and dope sheet by
selecting both from the view menu.

Chapter 10

251

There are many curve editor tools; most of them pertain to the editing of the tangents
between key frames.

See also
Go to the Creating a new Track View sequence recipe as it is required that you start a
new sequence to complete the previous recipe

Continue on to the Triggering a sequence using the Flow Graph recipe to learn how to
trigger your cut-scene

Triggering a sequence using the Flow Graph
Depending on the game or scenario you may be creating, you will likely have different
requirements for when and how cut-scenes should be triggered. This is catered quite nicely
for designers because of the cross communication within certain tools and systems of the
engine. In this recipe, we will use a simple flow graph to trigger a cut-scene when a player
walks into a certain trigger.

Getting ready
You must have a level open that has a previously saved Track View sequence in it.

If you have already completed the Animating a camera in the Track View and the Creating a
new Track View sequence recipes then you can use the my_first_cutscene sequence.

How to do it...
Let's set up a trigger to launch our cut-scene from game mode:

1. Click-and-drag a proximity trigger into the level. This can be found under the entities/
triggers section in the Rollout bar.

2. Once you have added it to the level, set the trigger bounds to be big enough to trigger
when the player enters it. The values are as follows:

DimX Value="5"

DimY Value="5"

DimZ Value="5"











Track View and Cut-Scenes

252

3. Next, right-click the proximity trigger and create a Flow Graph on it:

4. Name the Flow Graph cutscene_trigger.

5. Next, create the following Flow Graph by first adding the proximity trigger itself by
right-clicking and selecting Add selected entity.

6. Also add a the Animations:PlaySequence flow node.

7. Connect the Enter output of the proximity trigger to the start of the trigger of the
PlaySequence node.

Your resulting flow graph will look similar to the following screenshot�

Chapter 10

253

You can now enter the game mode and whenever you enter the proximity trigger, the
sequence is defined in the sequence parameters of the PlaySequence flow node.

How it works...
As you can see, one of the fastest ways to trigger a sequence is to attach it to a trigger object
such as the proximity trigger, which can be positioned in the level.

By building a Flow Graph that connects the trigger output of the ProximityTrigger to the start
trigger of a PlaySequence Flow Graph node, one can easily activate a sequence by having a
player enter the ProximityTrigger in the game.

There's more...
You may want to expand on this Flow Graph or learn how to use an easier testing method for
launching cut-scenes in CryENGINE.

Useful debugging trigger
Sometimes for cut-scenes, it can be easier to not have to enter a trigger every time you wish to
run the cut-scene. Another useful trigger is the input:key flow node that allows you to press a
defined key that will trigger the cut-scene.

Start time property
When a sequence is triggered from the PlaySequence node, you can force it to jump to a
particular start time. This can be useful if you wish to have multiple different events stored
within a single sequence.

Track View and Cut-Scenes

254

Break on stop property
When the sequence is stopped, by default, the time slider will go to the very last frame and
trigger the logic that may be stored there. This is typically used because when a scene is
skipped, you can still trigger all the logic and positional information on that last frame. Setting
Break on Stop to true will overwrite these defaults and cause the logic on the last frame not
to be triggered.

See also

Refer to the Debugging the Flow Graph recipe in Chapter 9, Game Logic if you cannot
get the Flow Graph to function

Continue to the next recipe to animate entities in your cut-scene

Animating entities in the Track View
The animation of objects and entities in the Track View can be as complex or as simple as the
animator or the designer requires. In this recipe, we will animate a dead tree falling into water.
This will involve animating the tree itself as well as triggering some particle effects at specific
times. The interesting part about this will be that we are not making a cut-scene but rather a
scripted game play event that will alter the path of the character.

Getting ready
You should have forest.cry open for this recipe

You should have created a new sequence with the name my_second_cutscene

How to do it...
First, we must add some geometry to animate. It is important to remember the difference
between a brush and the entities. Brushes cannot be added to the Track View.

1. To allow us to animate the geometry we are using the basic entity found under the
Entities | Physics section of the Rollout bar.

2. Once placed, name the BasicEntity to falling_tree_01 and set its model string to
objects/natural/vegetation/rocky_ravine/d_spruce_dead_a.cgf.









Chapter 10

255

3. Drag the Animobject somewhere near the water where it might be able to fall in and
allow the player to walk up.

4. Create an initial key frame and then drag the active time slider over to 1 second.

5. Reposition the tree to a fallen pose with the Record button set to active.

For the ease of this recipe, we will only create two poses but you can of course add
more key frames for a better looking animation.

Track View and Cut-Scenes

25�

With this kind of animation, you can rely on the preview timing for
collision type events such as particle effects. The alternative would be
to physically simulate this in the physics engine, which could be good
but not deterministic enough to be used for a reliable game play.

6. Next, let's add two particle effects to this sequence.

The first will be the breaking of the tree at the base with a wood splintering effect.

7. Add a particle effect from the database view under the particles/breakable_
objects/tree_break/small to the scene and align it to the base of the tree.

8. Add this particle effect to the Track View and create a key frame on the event timeline
for the particle effect. The property on this key frame must be set to spawn. Create
this key frame at the beginning of the scene to coincide with the destruction of
the tree.

9. Scrub the timeline until you find the point where the tree impacts the water.

10. Once you have found the first frame in contact between the water and the tree, place
a second particle effect from the database view under particles/water/body_
splash/corpse.

Chapter 10

25�

11. Add the spawn key frame for this particle effect just at the contact time between the
water and the tree.

12. Play the sequence back to preview the results!

You can now trigger this sequence through a Flow Graph depending on many different events!

How it works...
Animating the entities can allow for designer or animator controlled scripted type events.
This allows a fairly advanced manipulation of a wide variety of entities for these events. One
important use of this kind of rudimentary animation is to white box certain cinematic events
that may be further polished later on.

There's more...
You may want to know more about the different tracks available on entities or how to animate
the scale of an object.

Entity visibility track
A track available to most entities is the visibility track. We can add this by right-clicking the
entity in the sequence and selecting the visibility track.

When a key frame is created on this track, it will change the state of the object to hidden or
vice versa. The easiest way to visualize it is to see that when the track is blue the object is
seen, and when it is not, the object is hidden.

Animating scale
Scale is also accessible to most entities via the Track View. A scale track can be added by
right-clicking the added node and selecting scale.

Entities and their tracks
Some entities have unique tracks. For example, characters can play animations and explosion
entities can have explode events. Experiment with different entities in your cut-scene to see
what is exposed.

Track View and Cut-Scenes

25�

See also
Go to the Creating a new Track View sequence recipe earlier in this chapter to refresh
your memory on how to create a new sequence

Carry on to the next recipe to learn how to play animations on different entities in the
Track View

Playing animations on entities in the Track
View

In most cut-scenes, it is far easier to bring in authored animation on characters and even
objects from a DCC tool such as 3ds Max.

To be able to play these animations back in the Track View is a valuable tool as it allows for
more customization in what they want to achieve.

Getting ready
You must have created a new cut-scene in a level and added a camera to it.

How to do it...
Let's play some animation on an entity in the Track View:

1. Add an object of interest to the scene, for the camera to focus on.

2. In this example, you will add a human character, with a simple animation.

For characters in cinematics, an AnimObject is used, as
opposed to an AI Entity, for performance reasons. Also, because
an AnimObject doesn't have AI, the AI system won't conflict�
fight with the Track View system.

3. Select the AnimObject in the RollupBar and drag it into the level. With the
AnimObject selected, click Entity Properties in the RollupBar and set the string of
the model to a human character.

objects/characters/neutral_male/sdk_character_male.cdf

4. In the Track View, click the Add Selected Node icon. With the AnimObject added, you
can now add an animation track to animate the character.

5. Right-click the entity and on the Add Track menu, click Animation.





Chapter 10

25�

6. Select an animation for the character.

7. Double-click at frame 0 to add a key in the event track, and then select the key to
bring up the Key Properties section.

8. Then, from the drop-down list, select the standup_tocombat_nw_back_01
animation:

How it works...
The AnimObject entities can have the animation track, which allows us to add pre-authored
animations to the entity in the game. This is preferable for many cut-scenes where AI would
be inefficient or difficult to perform the exact same movements at the right times.

It is typical to hide an AI entity and then to unhide the AnimObject version of the AI for
the cut-scenes.

There's more...
You may want to know how to set up a looping animation or how to adjust the start time and
time scale for the animation on the entity.

Loop animation
Should you want the animation asset to loop on the character, you can simply set the loop
Boolean to True. This will loop the asset until told to stop.

Start time
You can manually set a time in the start time dialog to go to a certain frame of the animation.
This can be useful for different facial sequences as well as for climbing animations.

Track View and Cut-Scenes

2�0

Time scale
Using time scale, you can adjust the speed of animation to faster or slower than originally
intended. When adjusting the time scale, you will notice that the animation track will extend
the length of the selected animation when the loop is not selected.

See also
Go to the Animating entities in the Track View recipe in this chapter to learn how to
animate objects manually

You should go to the Creating a new Track View sequence recipe earlier in this
chapter to learn how to create new sequences

Using console variables (CVars) in the Track
View

Now that we have learned to create a variety of different sequences, we will explore some
of the bridges that the Track View has designed within to communicate to different systems
within the CryENGINE.

Getting ready
For this recipe, we will add some console commands to the Track View sequence created in
the first and the second recipes of this chapter. These two recipes must be already created to
go forward.

You should have the cut-scene my_first_cutscene open in the Track View and your view
set to that of the camera.





Chapter 10

2�1

How to do it...
Let's learn how to use a console variable key frame in the Track View:

1. Right-click the parent node of your first cut-scene and add a console variable�

2. You will then be asked to name this console variable.

It is very important that you name the console variable with the exact name of the
variable you would type into console to achieve the same effect.

3. For this example, set the name to e_TimeofDaySpeed.

You will see that it adds a track to the parent node of the sequence.

4. Next, create a key frame on the e_TimeofDaySpeed track.

5. Set the value of this key frame to 0.5.

What this will now do is force a command to the console, in this case, increasing the
time of play back speed to 0.5.

Track View and Cut-Scenes

2�2

6. It should be noted that you cannot preview the CVar events if the sequence is not
triggered from within the game.

In this case, you can use the previous setup performed earlier by creating a flow
graph and adding a input:key node to quickly trigger the sequence.

7. Trigger the flythrough sequence and notice that the Time of Day now plays according
to the value set in the Track View.

How it works...
Setting the console variables can sometimes be an easy way of achieving some tasks. In this
case, you can make a connection between events happening within a track sequence and the
engine's console.

There's more...
You may want to know more about animating the CVar values or how to use a powerful CVar
for the time scale.

Animating the CVar values
Console variables that are added to the sequence can have many different key frames, which
allows for the animation of these values. For example, you may want to change the play speed
of the Time of Day gradually from fast to slow or vice versa.

T_scale cvar in Track View
Sometimes, to slow down an entire sequence at once the t_scale cvar is used. This can
be used quite safely as long as it's understood that the default value is 1. A good setting for a
slow motion bullet time feel is about 0.2.

See also
Go to the Creating a new Track View sequence recipe earlier in this chapter to learn
how to create a sequence to add console variables to

Go to the Using track events recipe to learn how to create a special events trigger
from the Track View to the Flow Graph





Chapter 10

2�3

Using track events
This recipe will take you through setting up and using track events in the Track View editor.

A track event is a one-way signal that will allow you to branch Flow Graph logic from a Track
View sequence.

Each sequence may define any arbitrary number of track events, which can be called at
any time from a Track Event node. Each event may also carry with it a string value assigned
to the key in the Track View editor. When a track event is triggered from the sequence, its
corresponding output port in a special Flow Graph node is activated, allowing you to branch
Flow Graph logic very easily.

Getting ready
For this recipe, we will add some track events to the Track View sequence created in the first
and second recipes of this chapter. These two recipes must be already created to go forward.

You should have the cut-scene my_first_cutscene open in the Track View and your view
set to that of the camera.

How to do it...
First we must define some track events (track events may be defined per Track View
sequence):

1. Open the my_first_cutscene sequence, or create a new one to explore track
events quickly.

2. Once opened, right-click on the sequence in the tree view on the left and select the
Edit Events option:

3. A dialog box labeled Track View Events will open.

4. To create a track event, select the Add button and give the event a name. The event
will then be added to the list.

Track View and Cut-Scenes

2�4

5. TTTooo rrreeemmmooovvveee ttthhhiiisss eeevvveeennnttt,,, ssseeellleeecccttt iiittt fffrrrooommm ttthhheee llliiisssttt aaannnddd ssseeellleeecccttt ttthhheee Remove button. When you
are done, select the OK button to save your changes.

6. Create a new event called sequence started:

The track event node will allow you to call a track event with an optional string value
from the sequence.

7. To add the node to your sequence, right-click on the sequence in the tree view on the
left and select the Add Event option towards the bottom.

8. Give the node a name and it will then be added to your sequence.

9. From here, you will be able to add keys to toggle the track events just like any
other node.

10. If you select any of the keys you created on the event track, you can assign to it one
of your predefined event names by choosing them on the right side menu, called
Key Properties. You can also edit the list of track events for the sequence quickly by
double-clicking on Edit Track Events.

11. The next step will be to add this event to a Flow Graph.

12. To add your Flow Graph logic, you will first need to create a new graph or open an
existing one.

13. Then you will need to place a track event node, which can be done by right-clicking
anywhere in the graph and selecting it from the context menu.

Chapter 10

2�5

14. TTThhheee nnnooodddeee wwwiiillllll iiinnniiitttiiiaaallllllyyy bbbeee eeemmmppptttyyy aaannnddd yyyooouuu wwwiiillllll nnneeeeeeddd tttooo ssseeellleeecccttt yyyooouuurrr aaannniiimmmaaatttiiiooonnn ssseeeqqquuueeennnccceee
for the Sequence input port.

15. Once you select a valid sequence, the output port will be created for each track event
owned by that sequence.

16. From this point, create your Flow Graph logic using the created output ports.

When these events are triggered from the animation sequence as it plays through, the output
ports will trigger, allowing your Flow Graph logic to execute.

How it works...
Track Events allow for direct triggering at particular times within a sequence to the Flow
Graph. This allows for extremely complex combination of animation and flow graphed physics
or effects to be triggered through a sequence!

There's more...
You may want to know how to remove unused track events or how to trigger image nodes for
use within the track sequences.

Track View and Cut-Scenes

2��

Removing events from the sequence
If after placing a Flow Graph node, you add or remove track events from the sequence, the
Flow Graph node will update to reflect this change and the output ports will be created�
removed as such.

If you had a link leading from the output port of an event that is later
removed, the link will be deleted as well.

Triggering image nodes for track sequences
There are some powerful nodes in the Flow Graph under the image nodes.

These nodes can be triggered from a track event and distort or add some sort of effect to the
camera for sequences only.

console variables in the Track View recipe earlier in this chapter

See also
You do not have to create a Flow Graph to trigger console commands, go to the Using 

11
Fun Physics

In this chapter, we will cover:

Low gravity

Hangman on a rope

Tornadoes

Constraints

Wrecking ball

Rock slide

Introduction
Up to this point, we have looked into several different methods and tools to achieve some of
what's possible with CryENGINE 3. In this chapter, we will look into several different examples,
specifically of what the physics engine is capable of, such as manipulating gravity and setting
up the different objects with rope physics.

Low gravity
In this simple recipe, we will look at utilizing the GravityBox to set up a low gravity area within
a level.

Getting ready
Have Sandbox open

Then open My_Level.cry

















Fun Physics

2��

How to do it...
1. To start, first we must place down a GravityBox.
2. In the RollupBar, click on the Entities button.
3. Under the Physics section, select GravityBox.
4. Place the GravityBox on the ground:

Keeping the default dimensions (20, 20, 20 meters), the only property here that we want to
change is the gravity. The default settings in this box set this entire area within the level to
be a zero gravity zone. To adjust the up/down gravity of this, we need to change the value of
gravity and the Z axis.

To mimic normal gravity, this value would need to be set to the acceleration value of -9.81.
To change this value to a lower gravity value, (something like the Moon's gravity) simply
change it to a higher negative value such as -1.62.

How it works...
The GravityBox is a simple bounding box which overrides the defined gravity in the code
(-9.81) and sets its own gravity value within the bounding box. Anything physicalized and
activated to receive physics updates will behave within the confines of these gravitational
rules unless they fall outside of the bounding box.

Chapter 11

2��

There's more...
Here are some useful tips about the gravity objects.

Uniform property
The uniform property within the GravityBox defines whether the GravityBox should use its own
local orientation or the world's. If true, the GravityBox will use its own local rotation for the
gravitational direction. If false, it will use the world's direction. This is used when you wish to
have the gravity directed sideways. Set this value to True and then rotate the GravityBox onto
its side.

Gravity sphere
Much like the GravityBox, the GravitySphere holds all the same principles but in a radius
instead of a bounding box. The only other difference with the GravitySphere is that a false
uniform Boolean will cause any object within the sphere to be attracted/repulsed from the
center of the axis.

Hangman on a rope
In this recipe, we will look at how we can utilize a rope to hang a dead body from it.

Getting ready
Open Sandbox

Then open My_Level.cry

How to do it...
Begin by drawing out a rope:

1. Open the RollupBar.

2. From the Misc button, select Rope.

3. With Grid Snap on and set to 1 meter, draw out a straight rope that has increments
of one meter (by clicking once for every increment) up to four meters (double-click to
finalize the rope).





Fun Physics

2�0

4. Align the rope so that from end to end it is along the Z axis (up and down) and a few
meters off the ground:

5. Next, we will need something solid to hang the rope from.

6. Place down a solid with 1, 1, 1 meter.

7. Align the rope underneath the solid cube while keeping both off the ground. Make sure
when aligning the rope to get the end constraint to turn from red to green. This means it
is attached to a physical surface:

Chapter 11

2�1

8. Lastly, we will need to hang a body from this rope. However, we will not hang him in
the traditional manner, but rather by one of his feet.

9. In the RollupBar, click on the Entities button.

10. Under the Physics section, select DeadBody.

11. Rotate this body up-side-down and align one of his feet to the bottom end of the rope.

12. Select the rope to make sure the bottom constraint turns green to signal that it
is attached.

13. Verify that the Hangman on a rope recipe works by going into game mode and
punching the dead body:

How it works...
The rope is a complicated cylinder that can contain as many bending segments as defined
and is allowed to stretch and compress depending on the values defined. Tension and
breaking strength can also be defined. But since ropes have expensive physics properties
involved, they should be used sparingly.

Fun Physics

2�2

See also
The Wrecking ball recipe

Tornadoes
Another fun physics entity is the Tornado. In this recipe, we will look at placing one down and
allowing this tornado to roam around the level. We will also demonstrate it picking up and
throwing around multiple AI Grunts.

Getting ready
Open My_Level.cry within the Sandbox

Place down a dozen AI Grunts

How to do it...
Place down the Tornado entity by doing the following:

1. In the RollupBar, click on the Entities button.

2. Under the Environment section, select Tornado.

3. The default values for the tornado will not be sufficient to lift up the AI Grunt, so we will
have to adjust the following values:

SpinImpulse = 40

UpImpulse = 40

AttractionImpulse = 100

With these properties set, the next time we enter into game mode, the tornado will start to
wander around and pick up and toss the AI Grunts. Even the player himself can get caught in
this and be pulled around by the tornado.

How it works...
The Tornado entity is a special entity that applies multiple forces into a defined radius around
the entity. These forces are the same forces as described previously with SpinImpulse,
UpImpulse, and AttractionImpulse. You cccaaannn aaalllsssooo aaadddddd iiinnn aaa WanderSpeed, wwwhhhiiiccchhh wwwiiillllll aaallllllooowww
the tttooorrrnnnaaadddooo tttooo wwwaaannndddeeerrr aaarrrooouuunnnddd iiinnn aaa rrraaannndddooommm dddiiirrreeeccctttiiiooonnn ttthhhaaattt wwwiiillllll ssstttiiillllll fffooollllllooowww ttthhheee ttteeerrrrrraaaiiinnn...







Chapter 11

2�3

There's more...
The p_draw_helpers property, when set to 1, debugs the funnel of the tornado. As the
particle of the tornado does not scale with the physics of the tornado itself, you may see a
debug rendering of the radius and the spline of the tornado by using p_draw_helpers = 1.

Constraints
Previously in the Hangman on a rope recipe, we've looked at ropes and how they can bend
and move with the object(s) they are bound to. In this recipe, we will look at constraints,
which are a much cheaper hinge that can be used on two objects. Specifically, we will
hang a primitive pyramid object from a solid and allow it to swing on all axes.

Getting ready
Open My_Level.cry within the Sandbox

Place down a 1x1x1 meter solid and suspend it in the air roughly four meters off
the ground

Place down a BasicEntity and change the model to objects/default/
primitive_pyramid.cgf

Set the mass of the BasicEntity to 100









Fun Physics

2�4

How to do it...
Begin by placing down a constraint:

1. In the RollupBar, click on the Entities button.

2. Under the Physics section, select Constraint.

3. Place the constraint on the bottom surface of the solid box.

4. Move the pyramid underneath the solid box and have the tip intersect with the radius of
the constraint.

5. The next time the player jumps into the game and pushes the pyramid, it will move
according to the constraint provided.

How it works...
A constraint entity can create a physical constraint between two objects. The objects will
be selected automatically during the first update, by sampling the environment in a sphere
around the constraint object's world position with a specified radius. The first object (the one
that will own the constraint information internally) is the lightest among the found objects, and
the second is the second lightest (static objects are assumed to have infinite mass, so a static
object is always heavier than a rigid body).

Chapter 11

2�5

Constraints operate in a special constraint frame. It can be set to be either the frame of the
first constraint object (if UseEntityFrame is checked), or the frame of the constraint entity
itself. In that frame, the constraint can operate either as a hinge around the x axis, or as a
ball-in-a-socket around the y and z axes (that is, with the x axis as the socket's normal). If x
limits are set to a valid range (max>min) and the yz limits are identical (such as both ends
are 0), it is the former and if the yz limits are set and not x limits, it's the latter. If all limits
are identical (remains 0, for instance), the constraint operates in three degrees of freedom
mode (that is, it doesn't constrain any rotational axes). If all limits are set, no axes are locked
initially, but there are rotational limits for them.

There's more...
Here are the definitions of the properties on the constraints.

Constraint properties
The following are the constraint properties:

Damping: This sets the strength of the damping on an object's movement. Most
objects can work with 0 damping; if an object has trouble coming to rest, try values
such as 0.2-0.3. Values of 0.5 and higher appear visually as overdamping. Note that
when several objects are in contact, the highest damping is used for the entire group.

max_bend_torque: This is the maximum bending torque (currently it's only checked
against for hinge constraints that have reached one of the X limits).

max_pull_force: This specifies the maximum stretching force the constraint
can withstand.

NoSelfCollisions: This disables collision checks between the constrained objects (to
be used if the constraint is enough to prevent inter-penetrations).

Radius: This defines spherical area to search for attachable objects.

UseEntityFrame� This defines whether to use the first found object or the constraint
itself as a constraint frame.

Wrecking ball
Instead of using the dead body that we used in the Hangman on a rope recipe, we will look
at attaching a heavy RigidBodyEx in the shape of a ball to make a wrecking ball. Through this
the player will be able to activate the rope physics to swing the wrecking ball into a breakable
house and destroy a section of wall on it.













Fun Physics

2��

Getting ready
You should have completed the Hangman on a rope recipe

Open My_Level.cry within the Sandbox

How to do it...
Using what we've already learned from the Hangman on a rope recipe, we will now swap out
the DeadBody for a RigidbodyEx:

1. In the RollupBar, click on the Entities button.
2. Under the Physics section, select RigidBodyEx.
3. After placing the RigidBodyEx into your level, you first want to change the model over

to a sphere.
4. Select the newly placed RigidBodyEx.
5. In the RollupBar, you will find Model under Entity Properties.
6. Change the model to the following .cgf model objects/default/primitive_

sphere.cgf.
7. Then change ttthhheee fffooollllllooowwwiiinnnggg ppprrrooopppeeerrrtttiiieeesss ssstttiiillllll fffooouuunnnddd uuunnndddeeerrr Entity Properties:

CanBreakOthers = true

Mass = 1000

Resting = False

8. Next, we will need to adjust our vertical rope to line up more horizontally with a bit of
a bend in it.

Select your rope and use Edit Rope to move the rope segments
along the Y and Z axes.

9. Lastly, line up the RigidBodyEx to the end of the rope. The final assembly of this
should look like the following screenshot:





Chapter 11

2��

Now the wrecking ball is ready. However, it needs something to destroy. Place down a
destructive object in the path of the wrecking ball such as the following brush Objects/
library/architecture/village/village_house1_c.cgf. After ssseeettttttiiinnnggg uuuppp ttthhheee
wrecking ball over the head of the house, the player will see destruction occur the next time
they enter the level.

How it works...
The setup of the wrecking ball is very similar to the hangman, but just used in a different
context of how designers can utilize the rope physics.

See also
The Hangman on a rope recipe

Rock slide
In the wrecking ball recipe, we looked at using a RigidBodyEx sphere model to use as our
wrecking ball. In this recipe, we will use that same RigidBodyEx as the basis for a rock analog
and clone it a few times so we can build our landslide.



Fun Physics

2��

Getting ready
You should have completed the Wrecking ball recipe

Open My_Level.cry within the Sandbox

How to do it...
1. Begin by creating a terrain hill about 30 meters in height with a slope of about

35-45 degrees.

2. Copy and paste the house that was used from the Wrecking ball recipe and place it at
the bottom of the hill.

3. Next, select the sphere RigidBodyEx from the Wrecking ball recipe and clone it and
place it more than half way up the hill. Also, change the following properties on
the sphere:

Resting = False

4. Next, clone the RigidBodyEx five times and stack them on the hill like a carton of
eggs. Make sure they are tight and are also touching each other (this will make sure
they all get activated physics when triggered).

5. Last, place the breakable brush fence object Objects/library/barriers/
fence/wooden/wooden_fence_120_400_a.cgf under the bottom RigidBodyExs.
Be sure that the fence is also touching the RigidBodyExs.

6. Your setup should look like the following screenshot:





Chapter 11

2��

7. The next time the player enters the level and destroys the fence placed with
something like a rifle, the RigidBodyExs will activate its physics and slide/roll
down the hill and destroy the house as shown in the following image:

How it works...
The RigidBodyEx entity is an extension to the BasicEntity that reacts more realistically with
other entities and water. The attached object can break other objects and has more options
as to when and how to react.

There's more...
Here are some additional properties that can be applied to the RigidBodyEx class of the entity.

Physics properties
The physics properties are as follows:

ActivateOnDamage: This tells us that an inactive rigid body (RigidBodyActive=0)
should be activated on damage.
CanBreakOthers: This is True if the entity can break joined objects by colliding with
them (provided they overcome the strength limit). Basic entities have this flag off
unconditionally.
Density: (Density = Volume / Mass) This affects the way objects interact with other
objects and float in the water (they sink if their density is more than that of the water).
Note that both mass and density can be overridden in the asset.
Mass: (Mass = Density * Volume) This is the weight of the object (the density of the
object multiplied by its volume).









Fun Physics

2�0

Physicalize: If not set, the object will not be taken into account by physics.

PushableByPlayers: When set, the object can be moved by the player.

Resting: When True, the object's physics are asleep on start. When False, the
physics are activated until kinetic energy falls below the sleep_speed limit and
is put to sleep again (refer to sleep_speed shown further).

RigidBody: False means a static entity; True means a simulated rigid body.
Note that a rigid body can still behave like a static entity if it has mass 0 (set either
explicitly or by unchecking RigidBodyActive). The main difference between these rigid
bodies and pure statics is that the physics system knows that they can be moved by
some other means (such as the Track View) and expects them to do so. This means
that objects that are supposed to be externally animated should be mass-0 rigid
bodies in order to interact properly with pure physicalized entities.

RigidBodyActive: This property indicates that the object is a rigid body, but initially it
is immovable. Instead, it can be activated by an event later.

Simulation properties
The simulation properties are as follows:

Damping: (0..3) This sets the strength of the damping on an object's movement.
Most objects can work with 0 damping; if an object has trouble coming to rest,
try values like 0.2-0.3. Values of 0.5 and higher appear visually as overdamping.
Note that when several objects are in contact, the highest damping is used for the
entire group.

FixedDamping: (true/false) When true, this object will force its damping to the entire
colliding group (use it when you don't want a particular object being slowed by a
highly damped entity, such as a dead body).

max_time_step: (0.005..0.1) This sets the maximum time step the entity is allowed
to make (defaults to 0.01). Smaller time steps increase stability (can be required for
long and thin objects, for instance), but are more expensive. Each time the physical
world is requested to make a step, the objects that have their maxsteps smaller than
the requested one, slice the big step into smaller chunks and perform several sub
steps. If several objects are in contact, the smallest max_time_step is used.

sleep_speed: (0.01..0.3) If the object's kinetic energy falls below some limit over
several frames, the object is considered sleeping. This limit is proportional to the
square of the sleep speed value. A sleep speed of 0.01 loosely corresponds to the
object's center moving at a velocity of the order of 1 cm/s.

See also
The Wrecking ball recipe





















12
Profiling and

Improving
Performance

In this chapter, we will cover:

Profiling performance in the Sandbox

Saving level statistics

Enabling debug draw modes

Optimizing the levels with VisAreas and portals

Using light boxes and light areas

Activating and deactivating the layers

Introduction
In this very important chapter, we will explore some of the techniques used when optimizing
the performance of your game or simulation in CryENGINE 3.

In this chapter, you will learn how to measure the performance using some of the tools
available to the developer out of the box with the CryENGINE. We will also explore certain
printouts that can be made, which will help you profile different performance losses in your
level. Finally, we will explore real examples of optimizations that you can make to immediately
improve the overall performance of the CryENGINE.













Profiling and Improving Performance

2�2

Profiling performance in the Sandbox
CryENGINE has a huge variety of different built-in debugging and profiling tools. As you will
soon find out, some of them are very specific to a certain subsystem and only useful for
advanced users of the technology.

Others tools, however, are very useful for most engine users in their regular daily workflow.
This recipe lists the profiling console variables and commands that each programmer, artist,
and level designer working with CryENGINE should know...

Getting ready
To demonstrate the uses of the profiling tools it is not imperative that you have any particular
level open; however, to see real data you should have opened a populated level.

How to do it...
The proverbial first line of defense for developers in profiling and reading performance in the
Sandbox is the display info console command. It is on by default in the Sandbox.

Notice that you can enable and disable displaying the debug information through typing
r_displayinfo 0 or 1 into the console.

This command displays important information concerning your overall performance. Some of
the major values that you should be able to identify are:

CamPos: Camera position in world coordinates X, Y, and Z

Tris: Currently rendered triangle count

DP: Draw Primitive or Draw Calls

Mem: Currently allocated memory

DLights: Dynamic and deferred lights

FPS: Frames Per Second













Chapter 12

2�3

These values are important because typically the entire project sets budgets around these
values. Other than the camera position if you notice abnormal values or activities in any of
these values, you can be sure that you are experiencing some sort of performance loss. The
most effective measurement of performance is frame time. Frame time refers to the time that
each frame takes from the beginning to the end and is usually expressed in milliseconds (ms).

The reason for this is that Frames Per Second or FPS is defined as 1�frame time and is
hence a non-linear measure. To put this into perspective, this means an increase of two FPS
when the game running at 20 FPS, gives an extremely profitable gain of five ms, while the
same two FPS improvement on a game running at 60 FPS, will just result in a gain of only
0.5 ms.

By setting r_DisplayInfo to 2 instead of 1, it is possible to see the frame time instead of
the FPS. Here are some useful conversions:

16 ms = 60 FPS

33 ms = 30 FPS (target for CryENGINE)

40 ms = 25 FPS

How it works...
Performance can heavily depend on the run-time environment. It is thus quite important to
use similar conditions when comparing performance numbers on different levels and on
different system specifications. The performance on systems with different hardware, for
example, is likely to vary a lot. The GPU time is also very dependent on screen resolution.
The higher the resolution used, the lower the overall performance will become. Being able
to accurately measure and read the performance of your game in Sandbox and from the
launcher allows you to set budgets and follow them when creating the content.

The Display Info tab contains enough high-level information for general
performance profiling.







Profiling and Improving Performance

2�4

There's more...
You will surely want to know what constitutes a Draw Call and where their values and costs
come from, as well as how to deal with budgets and triangle counts.

Draw Calls
Every object with a material has a separate Draw Call. This also means that every sub material
in a material is a separate Draw Call.

Each Draw Call means setting material data and some other extra work on the CPU side plus
fill rate costs on the GPU side. This varies depending on screen area occupied by the Draw
Call itself.

Draw Call count will be affected depending on a certain number of conditions:

Opaque geometry has at least two Draw Calls: one for the Zpass otherwise known as
the Depth Pass, and the other for general rendering.
Shadows are extra Draw Calls, as are detail passes. There may even be material
layers such as wet or frozen that will add to this count.
The amount of non-deferred lights affecting geometry.

Strive to maintain an acceptable Draw Call count, which is typically around 2000 Draw Calls.
This can be done easily on design as well as art side and should be monitored at all times on
a per view basis.

Triangle count
One way to view just the triangles in CryENGINE is to enable wireframe. You can do this using
the console variable r_wireframe = 1.

This visualizes what the display information is saying it is currently drawing for triangles. This
should be monitored and can usually identify faults in occlusion as well as view distance ratios.

Budgets
In most cases, it is impossible to define specific per-object budgets for each art asset - the
final makeup of each view in the game depends on too many variables (how many objects,
how many characters, how much vegetation, and so on).

For example: A good overall budget should have:

2000 Draw Calls

1 million triangles

These budgets represent final in-game maximums for any particular view, including all
rendering features and effects (after the entire scene has been polished).











Chapter 12

2�5

These budgets do not give the environment or character artists a clear budget for how many
triangles to put into a building or a character but rather define how much can be viewed at
one time. It can be used by level artists to determine how many whitebox buildings should go
into a particular view and still leave enough room for characters, vehicles, and even particles.

See also

Go to the Creating a new level recipe in Chapter 2, Sandbox Basics to create your
own level to be profiled
Carry onto the next recipe to find out more about profiling level performance with
a printout

Saving level statics
Innn ttthhhiiisss rrreeeccciiipppeee,,, wwweee wwwiiillllll cccrrreeeaaattteee aaannn XXXMMMLLL rrreeepppooorrrttt wwwiiittthhh ssstttaaatttiiissstttiiicccsss fffooorrr ttthhheee cccuuurrrrrreeennntttlllyyy llloooaaadddeeeddd llleeevvveeelll... TTThhheee
report includes all assets that are loaded, their size, dependencies, and the number of
instances in the scene.

Getting ready
The report that we will generate will be created as an .xml and can be opened by using
Microsoft Excel.

How to do it...
The Save Level Statistics printout is accessible in two main ways. Both are quite simple:

1. The first way is to use the Tools menu in the Sandbox and navigate to the Save Level
Statistics option:





Profiling and Improving Performance

2��

2. The second way is to output the level statistics by using a console command.
Triggering the writing of the data from the console is quite useful when running
in the launcher. The console command you must enter is SaveLevelStats.

Performing this command through either method will create two .xml files under the
rootdirectory/testresults folder.

The names of these files contain the names of the level that they were saved from. For
example, the two files in the following example were saved from forest.cry:

These files are best opened with Microsoft Excel. Open Forest.xml in Excel. The first page
of the Save Level Statistics printout gives some important information:

Chapter 12

2��

It describes the engine version, the level, and whether the engine is running in a 32 or 64 bit
configuration. It also shows the average minimum and maximum frames per second.

The overall cost of a level can be quickly observed here as the count for static CGF geometry
is printed as well as for character models and finally entities. It even shows the memory
consumption required for each type.

Profiling and Improving Performance

2��

You can also get various profile information through the different pages generated. You can
change these pages in Excel easily by clicking the corresponding tab. Click on the Static
Geometry tab. In this tab, you can see in depth information on every static piece of geometry
in the level.

You can arrange the worksheet by using Excel's arrange feature to make it, so it sorts objects
from highest to lowest in a certain column. In the following example, you can easily see a
performance issue where a hair object is taking up a much greater amount of texture memory
than it should:

There are many more tabs and values associated with each. Some tabs will only be
useful to people working with code, such as, module memory. Others will be important
for artists, such as static objects and characters. Close the Forest.xml and open the
depends_Forest.xml.

The entire file prints out the dependencies of certain files on other files. For example, it shows
that a certain .mtl might have six different textures depending on it.

In a lot of cases, this can be used to reduce build and distribution sizes as well as identify
areas and objects where textures might be able to be combined.

Chapter 12

2��

How it works...
The Save Level Statistics prints out a variety of information in regards to a level as well as
the asset within certain levels. Being able to now print out this information into an Excel
spreadsheet allows complex operations to take place, such as tracking performance of a
certain level over its development or even identifying problem assets.

As it is in an Excel sheet, further systems could be created within Excel to graph the
improvement of level performance over time as it is developed.

There's more...
There are many different tabs presented to you in the Save Level Statistics printout. You will
want to know more about some of the values within it.

Textures tab and render targets
In the Textures tab of the Save Level Statistics printout, a common practice is to sort the
entire list from highest to smallest in order of texture memory.

When doing this you will inevitably notice values such as $HDRTarget or $SceneTarget.

Any textures with a $ proceeding them are known as render targets. These are not authored
textures but rather scene render targets that are generated by using different shaders and
post effects in real-time graphics. The texture size of the render target will depend in most
cases on the current render window size.

Physics tris and physics size
In most geometry related printouts, you will see values for both the number of triangles not
only a particular objects physics mesh is contained but also the physical size in kilobytes
(KB). This can be a very easy place to find problems with physics meshes and performance,
as almost all objects need a physics mesh and it must be as small as possible. The other
modifier of physics size is the user-defined properties contained within the asset.

Detailed dependencies tab
In the depends_Forest.xml, you should have noticed the Detailed Dependencies tab.
This tab is arguably the most useful as it breaks down thoroughly which assets depend on
what. It also simplifies further analysis by adding a prefix for every object with or without
dependencies.

Profiling and Improving Performance

2�0

See also
Go to the Profiling performance in the Sandbox recipe earlier in this chapter to learn
how to spot issues without having to save a whole printout
Carry on to the next recipe in this chapter to learn how to use various debug draw
modes to spot asset errors

Enabling the debug draw modes
In this recipe, we will explore the different modes that you can enable in the Sandbox to be
able to track down and spot the performance and assets problems.

Getting ready
This recipe will make extensive use of the console and in the previous performance cases you
must have a populated level opened for the majority of these functions.

How to do it...
As our goal is to provide the best performance, we need to be able to visually observe the
impact of using different debugging features, especially how to use them in combination with
each other:

1. The first debug view that we will use will be the r_stats 1 view. Enter r_stats 1
into the console to enable this:





Chapter 12

2�1

This view breaks down the per-frame statistics of the renderer. This is extremely
important as the render takes up the highest percentage in most cases of the
frame time. It is also the most important view to use when following certain
budget guidelines as designers and artist have direct control over these variables
by adjusting the number of lights in their viewable scenes or even decals.

2. The next view will allow you to asses the Draw Calls created by different effects as
well as by materials on objects. With the advanced deferred lighting solution within
CryENGINE, you can have a large number of deferred lights to achieve advanced
effects with minimal effect on the Draw Call count. However, it is still very valuable
to be able to view the breakdown of Draw Calls by object within a scene.

3. Enable this by using r_stats 6.

4. This will show the Draw Call cost of each object on the screen. They are listed by
depthpass calls, general calls, shadows calls, and finally misc.

Submaterials add to the Draw Call count if they are used as a
render material.

Another important consideration here that could be noted would be to use normal maps for
decals as they add to the depth pass calls.

Profiling and Improving Performance

2�2

Finally, we will explore overdraw:

1. Disable r_Stats 6 by typing r_stats 0 intttooo ttthhheee cccooonnnsssooollleee...

2. Enable the overdraw render mode by typing r_measureoverdraw 1:

This view allows you to visualize the amount of pixel instructions per pixel in a scene.
Overdraw is caused by a number of things, including alpha blending where a pixel is
calculated multiple times.

In the previous example, you can see the selection of four decals that overlap each other and
a road texture that is also alpha blended. The surrounding vegetation and terrain is relatively
low cost but the overlapping decals and road add greatly to the pixel cost.

The final section of debug views we will now explore is the entity debug draws. These enable a
number of different debug draws that for the ease of writing we will not cover.

Type in P_draw_helpers 1 to the console. This view is one of the most useful entity debug
draws that a developer can use when adjusting physics. This view essentially shows the view
the physics system has of the engine. Different levels of physical simulation are shown as
different colors in this view:

Chapter 12

2�3

How it works...
Being able to enable the various debug views is essential! For designers it is especially
important as they are the ones that spend the most time in Sandbox putting all the assets
together and usually have a direct impact on the overall per view performance in a level.

There's more...
You may want to know more about visualizing overdraw in your scene as well as some extra
console variables available to you when debugging assets.

Overdraw pixel cost scale
Depending on your performance guidelines you may have different budgets or need to
view different scales of r_measureoverdraw command. You can do this by adjusting the
r_MeasureOverdrawScale command, which will adjust the representation color of the
number of instructions required in each pixel:

Profiling and Improving Performance

2�4

R_stats 15
The r_stats 15 command is extremely valuable as it displays the frame time cost per render
pass. If the value appears red then it is over budget:

The goal should be to try to stay below 33ms in the scene property.

Profiles
Profiles can be activated by typing profile 1 into the console. This enables a per function
breakdown cost in frame time. This is especially useful for programmers when scripting and
adding new game code.

There are many profiles available and can be explored by using profiles 1-7

See also
Go to the Profiling performance in the Sandbox recipe earlier in this chapter to learn
how to spot issues without having to save a whole printout

Go to the next recipe to learn how to optimize levels using VisAreas and portals.

Optimizing the levels with VisAreas and
portals

A VisArea is used to define indoor areas that have their own ambient color. You can also
create indoor areas without this entity; however you will not be able to achieve totally dark
lighting conditions as the bright outdoor ambient lighting also affects indoor areas.

Objects inside a VisArea won't be rendered from outside
Helps to set up lighting inside rooms
With portals you can cut holes inside the VisAreas
Portals have to be smaller than the VisArea shape
You can enable/disable portals via FG
You can have multiple portals in one VisArea

















Chapter 12

2�5

Getting ready
Open any level and set up a small structure similar to the screenshot as shown next.

How to do it...
Lets create our own VisArea:

1. On the RollupBar, go to Area | VisArea.

2. Place the VisArea shape around your room.

3. Set the height.

Be sure everything related is inside the VisArea. Try to stay on the grid. Keep the
shape of the VisArea as simple as possible.

4. NNNeeexxxttt wwweee mmmuuusssttt create a portal for ooouuurrr rrroooooommm... PPPooorrrtttaaalllsss aaarrreee uuussseeeddd tttooo aaadddddd aaa vvviiisssuuuaaalll entrance
into the VisArea.

5. Create the portal shape according to the size of the entrance:

Profiling and Improving Performance

2��

Keep the size as small as possible (also the size of the portal can't be bigger than the
VisArea itself).

6. The portal has to be half inside the VisArea (being in the top and front view helps).
7. If you leave the VisArea (indoor) everything behind you will disappear. including the

walls that are located inside.
8. You will need a wall inside the VisArea and a wall outside the VisArea.

How it works...
VisAreas and portals allow for complex effects, like achieving underwater rooms or expansive
interiors while rigidly controlling what is being rendered at the time. They are typically used to
remove entire building interiors from rendering when the player views them from outside, it
also allows you to do the opposite where all exterior rendering is disabled and only the objects
within the VisArea are rendered. In either case, more control is given directly to the designer.

There's more...
There are different settings available to you when using portals and VisAreas, and some of
these are listed next. You may also want to know how to reduce the blind spots from within
the rooms that you have created.

Ambient color of VisAreas and portals
The ambient color parameter specifies which ambient color should be inside the VisArea or
portal. This should be thoroughly considered as the color difference between objects in a
portal with a different ambient color. The attached VisArea will then cause discontinuity in
lighting and visual quality.

Blind spots
You may find when adjusting portals and VisAreas that having any rotation outside of 90
degrees between their areas will cause blind spots and unpredictable behavior. This can be
easily fixed by simply ensuring the connection between the portal and VisArea is 90 degrees.

Using VisAreas and portals vertically
To create VisAreas and portals that work vertically, you must create them with their position in
mind. They cannot be rotated from vertical to lateral but rather must be drawn lateral instead.

See also

Go to the Making shapes with the Solids tool recipe in Chapter 3, Basic Level Layout,
to learn to construct solids
Carry onto the next recipe to learn how to use light boxes and light areas within
your VisAreas





Chapter 12

2��

Using light boxes and light areas
Light clipping boxes and areas are used for the implementation of deferred light clipping in
CryENGINE. It is a tool that will enable interior spaces to be lit far better and more accurately
than they had been in previous iterations of the CryENGINE.

Getting ready
Using light boxes and light areas is highly dependent on the situation. In this example, you
should have already completed the prior recipe on Optimizing the levels with VisAreas
and portals.

How to do it...
Let's test the process of using a light box:

1. Drag-and-drop the light box from the Area tab in the RolloutBar.
2. Next add a light to your scene.
3. In the lights entity links, add a link to the light box.
4. The light must have the DeferredClipBounds property set to True. Once set to true,

you will see the light will be clipped to that volume.
5. A deferred light that is linked to either a LightShape or a LightBox will be clipped to

that volume regardless of whether it is inside the volume or not:

Profiling and Improving Performance

2��

How it works...
There is a common problem of light bleeding becoming apparent with the deferred approach:
the boundaries of lighting are not controllable. Deferred light for example placed in one room
can bleed through the wall into another room.

Thankfully, there is a tool available for artists where they can specify a custom stencil culling
geometry for each light source in the scene.

This approach is very cheap provided that the clipping geometry is rather coarse and the
stencil tagging is very fast on consoles.

There's more...
You may want to know the limits of using light shapes or what occurs when trying to link to
multiple light shapes.

Using a concave light shape
If a concave light shape has been created, the editor should warn the user and not clip
the light.

Linking to multiple light shapes
If a light falls inside, or is linked to more than one LightBox or LightShape, the editor will warn
the user and clip the light to the first LightBox�LightShape in the list.

See also

The Placing the objects in the world recipe in Chapter 2, Sandbox Basics.

Activating and deactivating the layers
In this recipe, we will explore the use of an important flow graph node that allows designers to
stream in and out entire layers of objects.

Getting ready
The requirements for each level will be different and thus to begin, you should have a
populated level open that has entities split between different layers.



Chapter 12

2��

How to do it...
In this example, we will use the layer activation and de-activation to show all the contents
required for a particular game play section. Typically, when creating levels, they are split into
unique sections called action bubbles. It is common practice to hide layers that contain action
bubbles not being played. It is possible to activate and deactivate all entities in a specific layer
by using the Engine: LayerSwitch flownode.

Even brushes and solids can be hidden/unhidden using
this node.

1. Create a new flow graph and add thegraph aaannnddd aaadddddd ttthhheee Engine: LayerSwitch flownode to the graph.

2. Next, double-click in the layer property. This wwwiiillllll ppprrreeessseeennnttt yyyooouuu wwwiiittthhh aaa pppuuullllll---dddooowwwnnn wwwiiinnndddooowww
allowing you to set the layer that should be attached to this node:

Layer switching needs to be globally enabled in the level in order to work.

3. In the RollupBar, switch to the Terrain tab, then select Environment and set
UseLayersActivation to True, which is in the EnvState section.

How it works...
Being able to hide and show different layers, expands the control a designer has on the world
while the player is playing in it. It is common that multiple triggers are used to hide certain
layers or unhide other layers as the player progresses through a level. This can also save a
massive amount of time when it comes to re-working entire areas for a player to re-visit the
area after an event.

It is important to know that though it can immediately save performance there is no core
manipulation of the streaming system when performing layer switching.

There's more...
You may want to know the limits of layer switching or how to use this tool when it comes to
creating a cinematic.

Profiling and Improving Performance

300

Limits of layer switching
Though this is a simple technique, there are some limits to what it can do:

Entities which are set to Hidden In Game will not unhide if the Unhide input
is triggered

Picked up objects will disappear in the player's hands when their layer gets hidden

Only entities, brushes, and solids are affected

A layer which gets hidden�unhidden should never contain AI to avoid conflicts with
territories and waves

The layer switch has nothing to do with streaming

Cinematics
It is good workflow to always create a layer dedicated to cinematics. The cinematics will
typically have to unhide and hide different entities within the world to function, as well as, to
be able to maintain a high standard of quality in the cutscene while saving performance on
the rest of the level. Using the layer switch combined with the cinematics layer gives a lot
of control.

See also

Go to the Debugging the Flow Graph recipe in Chapter 9, Game Logic, tttooo llleeeaaarrrnnn hhhooowww
to debug a flow graph













Index
Symbols
*.cry file 51
.anm animations 197
 .anm files 196
.caf animation 183
.cdf (Character Definition File) 170
.CGA 163, 199
.CHR 163
.chrparams file

animation names, wildcarding 183
.cry files 8
.pak files

detecting 53
opening 52
re-exporting 53

<body> tag 207
<Damages> tag 220
<DamagesGroups> tag 220
<Power> tag 211
<SeatAction> tag 219
3ds

material, setting up for export engine
138-142

3D Studio Max
CryENGINE 3 plugin, installing 128

A
Add Event option 264
Additonal Animation. See .anm files
advanced material editor parameters

animate textures, using 154
using, for animation creation 153
vertex deformation 155
working 154

AI
about 227
AIGotoEx 228
FOVs, narrowing 121
Goto command, giving 227, 228
invisible area cross, limiting 113
invisible boundary cross, limiting 112, 113
respawning 122-124
wave FlowGraph node properties 125
working 228

AI_Goto 227
AI navigation

about 111
AI triangulation, generating 111
generating 111
working 111

AI triangulation
ai_debugdraw 1 119
ai_debugdraw 74 120
debugging 119
working 120

AIwave FlowGraph node properties
input 125
output 125

Align Height Map tool 64
animation

animation driven motion flag 187
assets, types 188
creating, advanced material editor parameters

used 153
filtering 188
previewing, for Sandbox 185-187
searching 188
upper body animation, creating 188-190
working 187

�0�

ArcadeWheeled parameters 208
Artificial Intelligence. See AI
AutoMove property 103

B
basic time of day

Cascaded Shadow Maps 82
creating 76-79
Fog subsection 80
Force sky update to True settings 82
play icon 83
record icon 83
sky color setting 79
Time Of Day dialog 82
Variance Shadow Maps 82
working 82

blendspace 194
Brushes

Geom entity, differentiating 62

C
camera animation, Track View sequence

curve editor 250, 251
Field of View (FOV) 250
in Track View editor 247, 248
playback speed 250
roll, adding to camera 249, 250
steps 246, 247
working 250

capture_folder console command 99
capture_frames_once command 99
capture_frames commnad 99
car

car speed, enhancing 211
machine gun, attaching 218
Massbox, manipulating 212
multiple cameras, setting up 215
new mesh, creating 199
new XML, creating 205
seat helper, creating 213
weak spot, giving 219

CarDestroy 221
car speed

Arcade Wheeled movement property 211
increasing 211

Cascaded Shadow Maps 82
character

.chrparams file, working 183
about 163
animating, from CryENGINE 179
animation, creating 178
animation names, wildcarding 184
animation names, wildcarding within

.chrparams file 183
animations compression, changing 183
Animobject entity 184
opening, in character editor 179-183
previewing, for Sandbox 185-187

character animation
.chrparams file Wildcard Mapping 183, 184
animations compression, creating 183
Animobject entity 184
creating 178-182
working 183

cloud feature
achieving, ways 104
enhancing 103, 104
shadows 104
working 104

color grading
_CCH naming convention 99
about 97
steps 98
TGA images, using 99
visual glitches, debugging 99
working 98

console variables (CVars)
t_scale cvar 262
using 260
using, in Track View 261, 262
values, animating 262
working 262

Console Variables window 16
constraints

about 273
constraint frame 275
placing down 274
properties 275
working 274

cookbook_wave animation 188
countdown timer

creating 238, 239

�0�

resulting Flow Graph 239
working 239

CryENGINE
animated characters 163
caustics 102
ragdolls 173
skinned characters, creating 164-171

CryENGINE 3
.cry files, working 7
AI 109
asset pipeline 128
cloud feature 102
color grading 98
D, unit setup used 135-137
default settings, restoring 28-30
level, opening 6, 7
level.cfg, using 8
material effects 155
source assets 128
static objects, exporting 143
target Assets 128
user folder, deleting 30

CryENGINE 3 plugin installation, for 3D Studio
Max

3ds Max CryTools Maxscripts 130
3ds Max CryTools Maxscripts, installing 130
3ds Max CryTools Maxscripts, uninstalling

130
assets, creating 128
starting with 128, 129
steps 129
tools, classifying 130
working 130

CryENGINE 3 Software Development Kit 5, 31
Crysis:HitInfo node 231
Crytek Geometry Animation. See .CGA
CryTIF

about 131
DDS file output, manual generation 135
default presets, adjusting 135
Plug-in Root Path, editing 134
using, for texture creation 131-134
working 134

Ctrl + E 52
Customize dialog box 19

D
debug draw modes

about 290
enabling 290-293
pixel cost scale 293
profiles 294
r_stats 15 command 294
working 293

Decals
parameters 68, 69
using, for terrain tiling breakup 67, 68
working 68

DefaultVehicleDamages.xml 221
DeferredClipBounds property 297
density {{density or =mass}} = mass parameter

152
Density offset parameter 94
Depth Pass 284
destroyable objects

2D breakable assets 151
about 149
creating 149, 151
jointed breakables 152
user defined properties 152
working 151

director node 244
Display Info tab 283

E
Edit Events option 263
Enemy AI

Grunt 110
placing 110
replacing, as Entity Archetypes 110
working 110

engine
.pak files, opening 52
exporting to 52

entity animation, Track View editor
about 254
entity visibility track 257
scale tracking 257
steps 254-256
tracks 257

�0�

working 257
entity parameter 152
environment, creating

basic time of day 76
cloud feature 103
Color grading 97
GI 86
global volumetric fog 92
HDR lighting 89
night scene 95
photo realistic ocean 99
rain 105
terrain lighting 83

Export Nodes button 196

F
FirstPerson class 216
First Person view to Third Person view

goc_camera 237
switching setup 236, 237

Flow Graph
about 229
debugging 229
players health, displaying 234, 235
prerequisites 229
result, clearing 230
sequence, triggering 251
working 229, 236

FlowGraph (FG) 123
Follow Terrain method 44
Follow Terrain tool 44
forbidden areas

cross, limiting 113
working 114

forbidden boundaries
cross, limiting 112
working 112

FOVs, AI
awarenessOfPlayer, working 121
FOVPrimary, working 121
FOVSecondary, working 122
narrowing 121

FPS 283
Frames Per Second. See FPS
frame time 283
Frequency (%) brush 40

G
Game Mode

switching to 49, 50
generic = count parameter 152
Geom entity

Brushes, differentiating 62
object types 62
placing, in level 61
working 62

GI
about 86
advanced Cvars 88
starting with 87
using 87
working 88

Global Illumination. See GI
global volumetric fog

about 92
creating 93, 94
Density offset parameter 94
fog rendering, disabling in Render Settings 94
fog rendering, enabling in Render Settings 94
working 94

Goto command 227

H
Hangman on rope example

performing, steps 269-271
starting with 269
working 272

HDR Lighting
about 89
Environment settings, exploring 89-91
flare light effects 91
glow texture effect 92
working 91

I
Icon Bar 18
image-based lighting

about 159
cons 160
creating, entity environment probe used 160
cubemaps, generating 161
cubemaps creating, Material Editor used 161

�05

pros 160
working 160

interior object navigation
AI Navigation Modifier 116
AI Points 116, 117
Auto-Dynamic Points vs Designer Controlled

Points 118
Entry/Exit Points 118
setting up 116
starting with 114, 115
working 118

K
Key Properties 264
kill counter

about 230
creating 230, 231
working 231, 232

kill goal
about 232
Math:Counter, using 234
player achievement, rewarding 232-234

L
Launcher 52

map, running 54
level

saving 50, 51
working 51

level.cfg 8
level navigation

Sandbox Camera 8-10
Sandbox Camera, using 8-10

level objects
browsing 25-27
frozen objects, browsing 28
hidden objects, browsing 28
list types 28
selecting 25-27
working 28

level optimization, VisArea used 294-296
level statics

about 285
Detailed Dependencies tab 289
physics size 289
physics tris 289

render targets 289
Save Level Statistics, working 289
saving 285-288
Textures tab 289

light areas
about 297
multiple light shapes, linking to 298
working 298

light box
about 297
concave light shape, using 298
using 297
working 298

Live Physics Skeleton. See Live Phys Skeleton
Live Phys Skeleton 167
locomotion animations

180 degree rotational assets 195
about 191
creating 191
locomotion loops 194
support structure, creating 191-193
swimming transitions 194
vehicle transitions 194
working 193, 194

LOD (Level of Detail)
about 172
creating 172

low gravity
GravityBox, working 268
Gravity sphere 269
setting up 267, 268
uniform property 269

M
machine gun

attaching, to car 218
working 219

Massbox, car
lighter objects, pushing 212
working 212

Material Editor
using, for cubemap creation 161

material effects
ammo, surface types 159
creating 155-158
defining 155

�06

new surface types, creating 159
physics block, parameters 159
working 158

materials
Physicalize checkbox 142
setting up, for export engine 138-142
textures in 3ds Max, assigning 142
working 142

Math:Equal node 239
Math:Round node 239
menus

customizing 17
Keyboard tab 21
Options tab 20
personalizing 21
Reset menu 21
shortcut key, assigning 21
working 20

multiple car cameras
first person camera 216
setting up 215
third person camera 216
wheel camera 217
working 218

multiple developer collaboration
external layer limitations 49
layers, utilizing 47, 48
working 48

multires 175

N
New button 19
new level

creating, from scratch 32, 33
Heightmap resolution 33
Meters per unit 33
options, working 33
Terrain option, using 33
Terrain size 33

new mesh, car
creating 199-201
dummy helpers, using 205
hierarchy, setting up 201
limitless possibilities 205
working 203, 204

night scene
corona color, adjusting 97
corona scale, adjusting 97
creating, time of day parameters used 95, 96
HDRSetup parameters 97
moon color, adjusting 97
SSAO amount 97
SSAO contrast 97

Night Sky parameter 96
Non-Uniform Scaling 46
Num Sides parameter

using 57

O
object layers

activating 299
cinematics 300
deactivating 299
layer switching, limits 300
requirements 298
working 299

object placement
angle snaps 46
Ctrl + Shift + Click 46
grids 46
local direction 46
refining 44, 45
Rotation refinement 46

object placing
about 43
steps 44
working 44

objects, grouping
group, closing 61
Group tool, working 61
prerequisites 60
steps 61

occlusion geometry 148
Ocean Animation parameters 101
Ocean Fog Color 100

P
p_draw_helpers property 273
parameters, Decals

Deferred 69

�07

ProjectionType 68
ViewDistRatio 69

personalized toolset layout
about 12
Console 16, 17
Rollup Bar 13
setting up 13-15
starting with 12
Status Bar 16
Toolbox 17
working 15

Perspective Viewport window
about 9
customizing 10
main viewport, splitting to several

subviewports 11
Speed input 11
viewport, adjusting 11
working 10

photo realistic ocean
caustics 102
creating 99-101
Free form transformation (FFT) water 102
water parameters, animating 101
working 101

physics properties, rock slide
ActivateOnDamage 279
CanBreakOthers 279
Density 279
Mass 280
Physicalize 280
PushableByPlayers 280
Resting 280
RigidBody 280
RigidBodyActive 280

player camera
changing, key input used 236, 237
working 237

portals
ambient color 296
levels, optimizing 294
vertical usage 296
working 296

Prefab
benefits 73
closing 74

creating 72, 73
Extract All function 74
Extract Object function 74
Modified Prefabs 73
new library, creating 72
opening 74
Pick and Attach function 74
Remove Object function 74
starting with 72
Update Prefab function 74
working 73

procedural terrain
generating 34, 35
generating, settings 36
working 36

procedural terrain generation setting
Blurring (Blur Passes) 37
Bumpiness / Noise (Fade) 36
Detail (Passes) 36
feature size 36
Make Isle 37
Set Water Level 37
Variation 36

profiling tools, Sandbox
budget 284, 285
Draw Call 284
frame time 283
Triangle count 284
using 282, 283
values 282
working 283

properties, constraints
damping 275
max_bend_torque 275
max_pull_force 275
NoSelfCollisions 275
Radius 275
UseEntityFrame 275

property, Arcade Wheeled
acceleration 211
decceleration 211
handbrake-decceleration 212
ReverseSpeed 211
TopSpeed 211

Pure Gamemode 52, 53

�08

R
r_measureoverdraw command 293
r_MeasureOverdrawScale command 293
r_stats 15 command 294
ragdolls, CryENGINE

about 173, 178
dead body entity settings 178
IK limits 177
ParentFrames 177, 178
setting up 174-176
starting with 173
working 177

rain
achieving 105
fog entity 107
global wind speed, adjusting 107
 lightning entity 106
particle-only technique 105, 106
Post Effect entity, working 106

rain.rain.space_loop functions 105
render targets 289
RESOURCE COMPILER 128
rigid body geometry data

.anm files, working 197
animating 195
creating 195, 196, 197
physically simulated animations, baking into

.cga objects 197, 198
pre-baked .cga, using 198

road parameters
SortPriority 63
StepSize 63
TileLength 63
width 63

Road tool
about 62
Align Height Map tool 64
road parameters 63
Shape Editing 64
starting with 62
using 62
working 63

rock slide
about 277
building 278, 279

physics properties 279
simulation properties 280
working 279

Rollup Bar
about 21
AI section 23
Archetype entity section 24
Area section 24
Entities section 24
Geom entity section 24
Misc Objects section 24
Prefabs section 25
Solids section 24
Sound section 25
starting with 22
using 22, 23
working 23

S
Sandbox

animation, previewing 185-187
characters, previewing 185-187
designing 9
profiling tools 282

Save State button 178
Scale (%) brush 40
seat helper, car

creating 213, 214
working 214, 215

Select Objects window 26
sequence trigger, Flow Graph used

Break on Stop property 254
debugging trigger, input�key flow node 253
start time property 253
steps 251-253
working 253

set capture_file_format command
TGA images, using 99

Shape editing
Adding Points 64
Angle 64
Individual Point Width 64

Show Rollup Bar command 20
simulation properties, rock slide

Damping 280
FixedDamping 280

�09

max_time_step 280
sleep_speed 280

sizevar = var parameter 152
skinned characters, CryENGINE

about 164
bone attachments 173
creating 165-171
geometry 164
LODs (Level of Detail), creating 172
materials, creating 172
starting with 164
working 171

Solids tool
about 56
basic chimney, creating 59, 60
basic shapes, creating 56
cone shape 57
cylinder shape 57
editing 57-59
merging 57-59
modifying 58
Num Sides parameter, using 57
prerequisites 56-58
selected geometry, exporting to .OBJ 60
sphere shape 57
working 57
XForm, resetting 60

Spawn point, for Pure Gamemode
creating 53
working 53

SSAO (screen-space-ambient occlusion) 86
static objects

about 143
box parameter 148
capsule parameter 149
creating 145
cylinder parameter 148
exporting 146, 147
Mass = Value parameter 149
models, creating 144
occlusion geometry 148
physics proxy 148
simple cylindrical unwrap 145
sphere parameter 149
user defined properties 148
working 147

T
terrain lighting

about 83
adjusting 84
Moon/Sun Shadow Transition, adjusting 85
SSAO (screen-space-ambient occlusion) 85,

86
Terrain Occlusion dialog box 85
working 85

Terrain sculpting
about 37
Noise settings 40
reposition objects 40
starting with 37
using 37, 38, 39
vegetation 40
working 39

terrain texture
Altitude and Slope, setting 43
Filter (Brightness), setting 43
Generating Surface Textures, setting 43
Radius and Hardness, setting 42
setting up 41, 42
Tile Resolution, setting 43
working 42

terraintexture.pak 43
terrain tiling breakup, Decals used

Decal parameters 68
starting with 67
steps 67, 68
working 68

territory FlowGraph node properties
input 124
output 124

textures
creating, CryTIF used 131

THE COLOR CORRECTION LOOKUP REFER-
ENCE CHART 97

toolbars
Console ToolBar 18
customizing 17-20
Delete button 19
Dialogs ToolBar 18
EditMode ToolBar 17
Mission ToolBar 18

�10

New button 19
Object ToolBar 18
Rename button 19
Reset button 19
Standard ToolBar 17
Terrain ToolBar 18
working 20

Tornadoes
about 272
p_draw_helpers property 273
placing down 272
working 272, 273

track events
image nodes, triggering from 266
removing, from sequence 266
using 263-265
working 265

Track View
console variables (CVars), using 260-262

Track View editor
about 241
AnimObject entities, working 259
entity, animating 254
entity animation, playing 258, 259
loop animation 259
start time 259
time scale 260
track events, using 263
using 241

Track View sequence
about 242
camera, animating 246
creating 242-244
director node, capture 246
director node, console 246
properties 246
working 245

trigger area setup
prerequisites 223
steps 224-226
working 227

U
units

grid setting 137
measurement references 137

setting up, for CryENGINE match 135, 136,
137

snap setting 137
working 137

upper body only animations
additive animations 190
additives, using 190
creating 188-190
working 190

V
Variance Shadow Maps 82
vegetation objects, painting

parameters 66
starting with 64
steps 65
Vegetation Painter, working 66

vegetation parameters
AlignTo Terrain 66
Bending 66
Brightness 66
CastShadow 66
Density 66
ElevationMin/Max 66
GrowOn Voxels/Brushes 66
Hideable 66
Layer_Frozen/Wet 67
LodDistRatio 67
Material 67
MaxViewDistRatio 67
MinSpec 67
Pickable 66
PlayerHideable 66
RandomRotation 66
RecvShadow 67
size 66
SizeVar 66
SlopeMin/Max 66
SpriteDistRatio 67
Use On Terrain Layers 67
UseSprites 67
UseTerrainColor 66

VisArea
ambient color 296
blind spots 296
creating 295, 296

�11

levels, optimizing 294-296
vertical usage 296
working 296

Voxel
about 69
caves, making 69-71
Copy Terrain 72
enhancing, options 72
materials 72
Soft Create 72
starting with 69
working 71

W
weak spot

giving, to car 219, 220
working 221

wrecking ball
about 276
using 276, 277
working 277

X
XML, for car

basic properties 206
components 210
creating 206
def_vehicle.xml file 210
DefaultVehicle.xml 206
movement parameters 208, 209
parts, creating 207, 208
working 210

Y
y axes 275

Z
Z axis , Shape Editing 64

Thank you for buying
CryENGINE 3 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3D Game Development
by Example Beginner's Guide
ISBN: 978-1-849690-54-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy little
games quickly

1. Build fun games using the free Unity 3D game
engine even if you’ve never coded before

2. Learn how to “skin” projects to make totally
different games from the same file – more games,
less effort!

3. Deploy your games to the Internet so that your
friends and family can play them

4. Packed with ideas, inspiration, and advice for your
own game design and development

Unity Game Development
Essentials
ISBN: 978-1-847198-18-1 Paperback: 316 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects,
and more!

1. Kick start game development, and build
ready-to-play 3D games with ease

2. Understand key concepts in game design
including scripting, physics, instantiation, particle
effects, and more

3. Test & optimize your game to perfection with
essential tips-and-tricks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: CryENGINE 3: Getting Started
	Introduction
	Opening a level in the CryENGINE 3 Sandbox
	Navigating a level with the Sandbox Camera
	Setting up a personalized toolset layout
	How to customize toolbars and menus
	Using the Rollup Bar
	Selecting and browsing level objects
	Restoring the CryENGINE 3 default settings

	Chapter 2: Sandbox Basics
	Introduction
	Creating a new level
	Generating a procedural terrain
	Terrain sculpting
	Setting up the terrain texture
	Placing the objects in the world
	Refining the object placement
	Utilizing the layers for multiple developer collaboration
	Switching to game mode
	Saving your level
	Exporting to an engine
	Essential game objects
	Running a map from the Launcher

	Chapter 3: Basic Level Layout
	Introduction
	Making basic shapes with the Solids tool
	Editing and merging solids
	Grouping the objects
	Utilizing the Geom entities instead of brushes
	Road construction
	Painting vegetation
	Breaking up tiling with Decals
	Making caves with Voxels
	Creating Prefabs to store in external libraries

	Chapter 4: Environment Creation
	Introduction
	Creating your first time of day using the basic parameters
	Adjusting the terrain lighting
	Using the real-time Global Illumination
	Editing HDR lighting and the effects for flares
	Creating a gobal volumetric fog
	Creating a night scene with time of day parameters
	Color grading your level
	Creating a photo realistic ocean
	Improving your sky with clouds
	Making it rain in your level

	Chapter 5: Basic Artificial Intelligence
	Introduction
	Placing the enemy AI
	Generating the AI navigation
	Forbidden boundaries
	Forbidden areas
	Setting up the interior navigation
	Debugging the AI triangulation
	Narrowing the AI's FOV to allow attacks from behind
	Respawning AI

	Chapter 6: Asset Creation
	Introduction
	Installing the CryENGINE 3 plugin for 3D Studio Max
	Creating textures using CryTIF
	Setting up units to match CryENGINE in 3ds
	Basic material setup in 3ds
	Creating and exporting static objects
	Creating and exporting destroyable objects
	Using advanced material editor parameters to create animation
	Creating new material effects
	Creating image-based lighting

	Chapter 7: Characters and Animation
	Introduction
	Creating skinned characters for the CryENGINE
	Ragdoll and physics for characters
	Creating animation for your character
	Previewing animations and characters for Sandbox
	Creating upper body only animations
	Creating locomotion animations
	Animating rigid body geometry data

	Chapter 8: Creating Vehicles
	Introduction
	Creating a new car mesh (CGA)
	Creating a new car XML
	Giving more speed to the car
	Increasing the mass to push objects with the car
	Defining a sitting location
	Setting up multiple cameras for the car
	Need for a machine gun
	Giving the car a weak spot

	Chapter 9: Game Logic
	Introduction
	How to beam the player to a tag point from a trigger
	Making the AI go to a location when the player enters a proximity trigger
	Debugging the Flow Graph
	Creating a kill counter
	Rewarding the player for reaching a kill goal
	Displaying the player's health through a Flow Graph
	Changing the player camera through key input
	Creating a countdown timer

	Chapter 10: Track View and Cut-Scenes
	Introduction
	Creating a new Track View sequence
	Animating a camera in the Track View
	Triggering a sequence using the Flow Graph
	Animating entities in the Track View
	Playing animations on entities in the Track View
	Using console variables (CVars) in the Track View
	Using track events

	Chapter 11: Fun Physics
	Introduction
	Low gravity
	Hangman on a rope
	Tornadoes
	Constraints
	Wrecking ball
	Rock slide

	Chapter 12: Profiling and Improving Performance
	Introduction
	Profiling performance in the Sandbox
	Saving level statics
	Enabling the debug draw modes
	Optimizing the levels with VisAreas and portals
	Using light boxes and light areas
	Activating and deactivating the layers

	Index

